首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cultured cells from adult rat anterior pituitaries or intermediate lobes were treated with the proteinase inhibitor tripeptide aldehydes BOC-DPhe-Pro-Arg-H (Boc-fPRH) and DPhe-Pro-Arg-H (fPRH), ovine corticotropin-releasing factor (oCRF), and bromocriptine. One millimolar fPRH stimulated basal, and slightly enhanced oCRF-induced ACTH release by melanotrophs in short-term experiments. The basal release of alpha-MSH was also stimulated by the drug. In long-term experiments, fPRH elevated markedly both the release and the intracellular level of ACTH; BOC-fPRH caused an increased alpha-MSH release. Tritiated fPRH had no preference for POMC-producing cells and BOC-fPRH or fPRH were harmless to the cell morphology. In anterior pituitary cell cultures, fPRH diminished slightly basal and oCRF-induced ACTH release. Bromocriptine was ineffective on corticotrophs, however, in melanotrophs it inhibited ACTH release markedly with or without fPRH in the medium. The dissimilar responsiveness of the corticotrophs and melanotrophs to the peptide aldehydes may be interpreted in terms of their differing membrane receptors or intracellular mechanism of stimulus-secretion coupling.  相似文献   

2.
The present study was aimed at investigating whether PACAP stimulates accumulation of cAMP, as well as hormonal secretion of homogeneous populations of pituitary proopiomelanocortin (POMC) cells, namely melanotrophs and AtT-20 corticotrophs. PACAP was shown to enhance cAMP accumulation in a dose-dependent fashion in both cell types (with EC50 values of approx. 10(-10) M) and elicited additive increases of cAMP production with CRF in melanotrophs, but not in corticotrophs. PACAP also stimulated dose-dependently the secretion of alpha-MSH and ACTH, with EC50 concentrations of about 10(-9) M. In melanotrophs, bromocriptine significantly depressed PACAP-induced cAMP formation and blunted by more than 90% stimulated alpha-MSH release. This study shows that (1) pituitary POMC cells did respond to PACAP by enhancing cAMP accumulation and elevating hormone secretion as well; (2) the effect of PACAP was additive with CRF on cAMP production in melanotrophs, but not in corticotrophs, while there was no additivity on peptide output from both cell types; (3) activation of dopamine receptors in melanotrophs dampened both cAMP formation and peptide secretion. These findings are consistent with PACAP playing a possible hypophysiotropic role in the regulation of pituitary POMC cell activity.  相似文献   

3.
B Lutz-Bucher  J M Félix  B Koch 《Peptides》1990,11(6):1183-1189
The present study was aimed at investigating the effect of protein kinase C (PKC) activation on CRF receptor function of proopiomelanocortin (POMC) cells in culture. Incubation of tissues with the phorbol ester PMA selectively potentiated corticotropin-releasing factor (CRF)-stimulated ACTH secretion and cyclic AMP formation of anterior pituitary (AP) cells, while, in sharp contrast, it failed to similarly affect intermediate pituitary (IP) cells and AtT-20 corticotrophs exposed to CRF. Unexpectedly, however, long-term treatment of cultures with PMA, which depletes cell stores of PKC, resulted in a similar dramatic attenuation of stimulated peptide release from both corticotrophs and melanotrophs, while being without significant effect on cyclic AMP production. Exposure of cells to PMA did not change either basal or CRF-enhanced levels of POMC mRNA. We conclude that activation of PKC fails to synergize with CRF-mediated signalling in IP and AtT-20 cells, although optimal CRF receptor expression requires the presence of a functional kinase C pathway, thus suggesting cross-talks between both messenger systems.  相似文献   

4.
Basophil invasion, i.e., invasion of basophilic corticotrophs from the residual intermediate lobe into the posterior lobe of the human pituitary gland, is believed to be a physiological phenomenon. This study evaluated the distribution of CPE, CPD, CPZ, alpha-MSH, ACTH, and Ki-67 immunoreactivity between human anterior pituitary and basophil invasion of the neurohypophysis. Mild to moderate immunoreactivities for CPE and CPZ were distributed relatively uniformly in the majority of the anterior pituitary cells and basophil invasion. In contrast, only corticotrophs exhibited intense CPD immunoreactivity. Basophil invasion showed similar immunoreactivities for alpha-MSH, ACTH, CPE, and CPZ as corticotrophs in the anterior pituitary, except for CPD, which was detected much less frequently. In the posterior lobe, CPE, CPD, and CPZ were present within the Herring bodies. Although no MIB-1 immunoreactivity was identified in anterior pituitary cells, limited MIB-1 labeling was detected in basophil invasion in five of ten cases. Highly selective expression of CPD in corticotrophs suggests that CPD plays a particularly important role in prohormone (POMC) processing in corticotrophs, with minimal or no significant roles in non-corticotrophs. Evidence that corticotrophs in basophil invasion are undergoing proliferation and are also phenotypically different from their counterpart in the anterior pituitary has further raised the possibility of some neoplastic potential.  相似文献   

5.
A synthetic peptide (ST-1) corresponding to the cleavage site between ACTH and beta-lipotropic hormone moieties of murine pro-opiomelanocortin (POMC) was constructed and its polyclonal antibody was generated. This antiserum immunoprecipitated only POMC from extracts of AtT-20 cells. Moreover, an antiserum raised against porcine ACTH immunoprecipitated both ACTH[1-39] and POMC. When ultra-thin frozen sections of melanotrophs in rat pars intermedia were immunolabeled with anti-ST-1 followed by protein A-gold, gold particles indicating the presence of POMC were selectively found in the electron-dense secretory granules in the Golgi area. In addition, the immunolabeling was also observed in the cisternae of the Golgi apparatus and rough endoplasmic reticulum. In contrast, with a polyclonal antibody specific for alpha-melanocyte-stimulating hormone the gold particles were found exclusively in the electron-lucent secretory granules, with none seen in the electron-dense secretory granules. With anti-ACTH serum, gold particles were observed in the electron-dense and -lucent secretory granules. In corticotrophs in the pars distalis, many gold particles indicating the presence of POMC were observed in the Golgi and peripheral secretory granules, but the percentage of immunolabeling in the peripheral secretory granules varied from cell to cell. On the other hand, ACTH immunolabeling was found in almost all the secretory granules. This finding suggests that the processing of POMC in corticotrophs might occur in the relatively peripheral granules. These results suggest that the intracellular sites of POMC processing are somewhat different between melanotrophs and corticotrophs in the pituitary.  相似文献   

6.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

7.
In the anterior pituitary gland, c-Fos expression is evoked by various stimuli. However, whether c-Fos expression is directly related to the stimulation of anterior pituitary cells by hypothalamic secretagogues is unclear. To confirm whether the reception of hormone-releasing stimuli evokes c-Fos expression in anterior pituitary cells, we have examined c-Fos expression of anterior pituitary glands in rats administered with synthetic corticotrophin-releasing hormone (CRH) intravenously or subjected to restraint stress. Single intravenous administration of CRH increases the number of c-Fos-expressing cells, and this number does not change even if the dose is increased. Double-immunostaining has revealed that most of the c-Fos-expressing cells contain adrenocorticotrophic hormone (ACTH); corticotrophs that do not express c-Fos in response to CRH have also been found. However, restraint stress evokes c-Fos expression in most of the corticotrophs and in a partial population of lactotrophs. These results suggest that c-Fos expression increases in corticotrophs stimulated by ACTH secretagogues, including CRH. Furthermore, we have found restricted numbers of corticotrophs expressing c-Fos in response to CRH. Although the mechanism underlying the different responses to CRH is not apparent, c-Fos is probably a useful immunohistochemical marker for corticotrophs stimulated by ACTH secretagogues. This work was supported by the Jichi Medical University young investigator award.  相似文献   

8.
The involvement of lysosomes in ACTH and prolactin secretion was studied. Lysosomes were visualized in the anterior pituitary by their non-specific esterase (gold thioacetic acid technique) or acid phosphatase (Gomori technique) activity. Corticotrophs and mammotrophs were identified by postembedding immunocytochemistry for their respective hormones. Corticotrophs were rendered hypersecretory by bilateral adrenalectomy (7 or 12 days prior to examination), hyposecretory by dexamethasone administration. Prolactin secretion was enhanced by 17-beta-estradiol, prolactin release was inhibited by bromoergocriptine administration. Long-term hypersecretion of ACTH was accompanied by the presence of numerous autophagic vacuoles often containing secretory granules in the corticotrophs. Lysosomal enzyme-containing tubules and small lysosomes were abundant in the cytoplasm near the cell membrane, among the mature secretory granules. Feed-back inhibition of ACTH release by dexamethasone resulted in the extension of enzyme-containing tubules, continuous with cisternae and small lysosomes anywhere in the cytoplasm and in the appearance of numerous crinophagic vacuoles. A higher frequency of tubular lysosomes was described at the periphery of mammotrophs stimulated by 17-beta-estradiol. Bromoergocriptine caused a high incidence of characteristic crinophagic vacuoles in the prolactin cells. The concept of crinophagy has been extended to the corticotrophs. Morphological phenomena were attributed to the traffic and increased turnover of membranes, ligands and cytoplasmic organelles during stimulated secretion.  相似文献   

9.
Summary The involvement of lysosomes in ACTH and prolactin secretion was studied. Lysosomes were visualized in the anterior pituitary by their non-specific esterase (gold thioacetic acid technique) or acid phosphatase (Gomori technique) activity. Corticotrophs and mammotrophs were identified by postembedding immunocytochemistry for their respective hormones. Corticotrophs were rendered hypersecretory by bilateral adrenalectomy (7 or 12 days prior to examination), hyposecretory by dexamethasone administration. Prolactin secretion was enhanced by 17-beta-estradiol, prolactin release was inhibited by bromoergocriptine administration. Long-term hypersecretion of ACTH was accompanied by the presence of numerous autophagic vacuoles often containing secretory granules in the corticotrophs. Lysosomal enzyme-containing tubules and small lysosomes were abundant in the cytoplasm near the cell membrane, among the mature secretory granules. Feed-back inhibition of ACTH release by dexamethasone resulted in the extension of enzyme-containing tubules, continuous with cisternae and small lysosomes anywhere in the cytoplasm and in the appearance of numerous crinophagic vacuoles. A higher frequency of tubular lysosomes was described at the periphery of mammotrophs stimulated by 17-beta-estradiol. Bromoergocriptine caused a high incidence of characteristic crinophagic vacuoles in the prolactin cells. The concept of crinophagy has been extended to the corticotrophs. Morphological phenomena were attributed to the traffic and increased turnover of membranes, ligands and cytoplasmic organelles during stimulated secretion.  相似文献   

10.
Iwabuchi M  Oki Y  Yoshimi T 《Life sciences》1999,64(12):1055-1062
Activation of protein kinase C (PKC) stimulates adrenocorticotropin (ACTH) release synergistically in the presence of corticotropin releasing factor (CRF). We examined the effect of a cyclic nucleotide-specific phosphodiesterase inhibitor, 1-isoamyl-3-isobutylxanthine (IIX), on arginine vasopressin (AVP)-induced ACTH release and intracellular cAMP accumulation in normal rat anterior pituitary cells. IIX alone elevated intracellular cAMP accumulation. IIX potentiated AVP-induced ACTH release synergistically without further increase in cAMP accumulation, suggesting that synergistic ACTH release has an alternative mechanism other than the synergistic elevation of intracellular cAMP accumulation which has been reported. Phorbol 12-myristate-13-acetate (PMA) also induced synergistic ACTH release when incubated with IIX. IIX had no additional effect on ACTH response when incubated with maximal dose of CRF, forskolin or 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP). Moreover, the combination of PMA and 8-Br-cAMP produced synergistic ACTH response. In conclusion, the synergistic ACTH release from rat pituitary corticotrophs occurs at least in the presence of directly activating events of PKC and PKA as well as PKC-induced inhibition of phosphodiesterase activity.  相似文献   

11.
12.
Suckling- and estrogen-induced prolactin release from the anterior pituitary is mediated by alpha-melanocyte stimulating hormone (alpha-MSH) secreted by the intermediate lobe of the pituitary in the rat. Melanocortin 5-receptors are expressed in the anterior pituitary and probably mediate the alpha-MSH function. In contrast, the mouse anterior pituitary does not express the receptor. To examine whether or not alpha-MSH regulates prolactin release in mice, we performed cell immunoblot assay using anterior pituitary cells from adult female mice. We found that alpha-MSH acted on mammotrophs (prolactin-secreting cells) and stimulated prolactin release in a dose dependent manner. A series of RT-PCR using oligonucleotide primer pairs specific for each subtypes of melanocortin receptors revealed that the melanocortin 3-receptor is the sole receptor expressed in the mouse anterior pituitary. These results suggest that alpha-MSH-induced prolactin release is mediated by melanocortin 3-receptors in female mice.  相似文献   

13.
The ontogenesis of immunoreactive (ir) ACTH cells and ir alpha-MSH cells in rat hypothalamus was studied in vivo and in vitro. Ir ACTH cells first appeared in the neuroepithelial cell layer lining the floor of the third ventricle on Day 13.5 of gestation, whereas ir alpha-MSH first appeared in the cytoplasm of several ir ACTH cells in the basal part of the arcuate nucleus of the hypothalamus on Day 19.5. When the medial-basal hypothalamus of 12.5-day embryos was cultured alone, a few ir ACTH cells were found after culture for 10 days, but not 3 days, and no ir alpha-MSH cells were observed in the cultures. When the hypothalamus was cultured with Rathke's pouch (intact or without the intermediate lobe anlage), ir ACTH cells appeared within 3 days. In these cultures on Days 6 and 10, long beaded fibers were seen projecting from cells in the neuronal tissue, and some cells showed immunolabeling for alpha-MSH. When the hypothalamus was cocultured with oral epithelium instead of Rathke's pouch, the appearance of neuronal ir ACTH cells was like that in cultures of hypothalamus alone. These in vitro findings suggest that stimulus from the anterior lobe anlage of the pituitary is necessary for normal development of ir ACTH/alpha-MSH cells in the hypothalamus.  相似文献   

14.
Desensitization of corticotropin-releasing factor receptors   总被引:4,自引:0,他引:4  
Pretreatment of rat anterior pituitary cells with corticotropin releasing factor (CRF) rapidly and markedly reduced the ability of CRF to restimulate cyclic AMP formation and adrenocorticotropic hormone (ACTH) release. The effect was dependent on the length of time of pretreatment as well as the concentration of CRF. Neither basal nor intracellular immunoreactive ACTH levels nor basal cyclic AMP content were affected. CRF's stimulatory action on cyclic AMP formation and ACTH release recovered within one hour following CRF pretreatment. Forskolin, a compound that directly activates adenylate cyclase also releases ACTH from these cells. Pretreatment with CRF did not alter forskolin-stimulated cyclic AMP accumulation or ACTH secretion. Furthermore, CRF pretreatment did not change epinephrine's ability to increase the release of ACTH. These results indicate that CRF can regulate the responsiveness of its own receptor.  相似文献   

15.
Pituitary corticotroph ontogeny and regulation in transgenic zebrafish   总被引:4,自引:0,他引:4  
We characterized zebrafish proopiomelanocortin (POMC) gene promoter, and sequence analysis revealed that the promoter contains regulatory elements conserved among vertebrate species. To monitor the ontogeny of the pituitary POMC lineage in living vertebrates, we generated transgenic zebrafish expressing green fluorescent protein (GFP) driven by the POMC promoter. Zebrafish POMC-GFP is first expressed asymmetrically as two bilateral groups of cells most anterior to the neural ridge midline at 18-20 h post fertilization (hpf). POMC-GFP-positive cells then fuse into a single-cell mass within the pituitary anlage after 24 hpf and subsequently organize as distinct anterior and posterior domains between 48 and 64 hpf. Immunohistochemical studies with ACTH and alphaMSH antisera showed that POMC-GFP was mainly targeted to both anterior and posterior pituitary corticotrophs, whereas posterior pituitary region melanotrophs did not express GFP. To determine in vivo zebrafish corticotroph responses, dexamethasone (10(-5) m) was added to live embryos, which selectively suppressed POMC-GFP expression in the anterior group of corticotrophs, suggesting a distinct domain that is responsive to glucocorticoid feedback. Transgenic zebrafish with specific POMC-GFP expression in pituitary corticotrophs offers a powerful genetic system for in vivo study of vertebrate corticotroph lineage development.  相似文献   

16.
Apelin is a bioactive peptide recently identified as the endogenous ligand of the human orphan G protein-coupled receptor APJ. The presence of apelin-immunoreactive nerve fibers, together with the detection of apelin receptor mRNA in the parvocellular part of the paraventricular nucleus and the stimulatory action of apelin on corticotropin-releasing hormone release, indicate that apelin modulates adrenocorticotropin (ACTH) release via an indirect action on the hypothalamus. However, a direct action of apelin in the anterior pituitary cannot be excluded. Here, we provided evidence for the existence of an apelinergic system within the adult male rat pituitary gland. Double immunofluorescence staining indicated that apelin is highly coexpressed in the anterior pituitary, mainly in corticotrophs (96.5 +/- 0.3%) and to a much lower extent in somatotropes (3.2 +/- 0.2%). Using in situ hybridization combined with immunohistochemistry, a high expression of apelin receptor mRNA was also found in corticotrophs, suggesting a local interaction between apelin and ACTH. In an ex vivo perifusion system of anterior pituitaries, apelin 17 (K17F, 10(-6) M) significantly increased basal ACTH release by 41%, whereas apelin 10 (R10F, 10(-6) M), an inactive apelin fragment, was ineffective. In addition, K17F but not R10F induced a dose-dependent increase in K(+)-evoked ACTH release, with maximal increase being observed for a 10(-6) M concentration. Taken together, these data outline the potential role of apelin as an autocrine/paracrine-acting peptide on ACTH release and provide morphological and neuroendocrine basis for further studies that explore the physiological role of apelin in the regulation of anterior pituitary functions.  相似文献   

17.
Corticotropin releasing factor (CRF) was tested for its ability to stimulate ACTH and β-endorphin secretion from clonal AtT-20D16-16 mouse pituitary tumor cells. Release of both hormones was stimulated 4 to 5-fold over the basal release at nanomolar concentrations of synthetic CRF. CRF analogues stimulated ACTHβ-endorphin release with the same order of potency in the tumor cells as in primary cultures of anterior pituitary cells. A 90-min exposure to CRF elicited a 29–35% increase in total ACTH and β-endorphin immunoreactivity in tumor cell cultures. Dexamethasone markedly inhibited CRF-stimulated and basal ACTH and β-endorphin release. AtT-20D16-16 cells may serve as a good model system for studying the biochemistry of CRF receptor-mediated events involved in ACTHβ-endorphin release and synthesis.  相似文献   

18.
Pituitary sections from 15 to 21 day-old rat foetuses have been studied with the immunofluorescence technique, using antibodies anti alpha-MSH, anti beta-MSH and anti beta (1-24) ACTH. The first ACTH cells appear on day 17 of pregnancy in the pars distalis of the hypophysis and only on day 18 in the pars intermedia. beta-msh cells have been observed on day 16 in the pars anterior and on day 17 in the pars intermedia, while alpha-MSH cells appear only on day 18 and exclusively in the pars intermedia. The cytodifferentiation of the beta-MSH and ACTH cells occurs in the pars intermedia with about a 24 hours delay in comparison to that of the pars distalis. The first revealed cells are always located in the posterior half of the pituitary gland. The corticostimulating activity of the hypophysis has been tested with the fluorescence intensity of the corticotrophs, the adrenal weight, the adrenal content in corticosterone and the plasma corticosterone level. The fluorescence of the corticotrophs increases on day 18, shows a maximum on day 19 and decreases until term. The adrenal weight rises regularly between day 16 to day 20, thereafer the increase subsides. Adrenal and plasma corticosterone concentrations reach a peak on day 19 of pregnancy. These data suggest that hypophyseal corticostimulating activity is very high between days 18 and 19 and decreases between days 19 and 21.  相似文献   

19.
Delta-sleep-inducing peptide (DSIP, 10(-9) - 10(-7) M) significantly inhibited the CRF-induced ACTH release from rat anterior pituitary quarters in vitro. 10(-8) M DSIP showed the most prominent inhibition. DSIP (10(-8) M) also inhibited the CRF-activated cAMP levels in anterior pituitary tissue. DSIP did not influence basal ACTH or cAMP levels. Prostaglandin E2 (PGE2)-release from anterior pituitary quarters was not changed by DSIP. From these results, we conclude that DSIP inhibits CRF-induced ACTH release at the pituitary level through the inhibition of the cAMP system in corticotrophs. The involvement of PGE2 in this phenomenon is unlikely.  相似文献   

20.
Proliferation of corticotrophs following adrenalectomy (ADX) was studied by a combination of bromodeoxyuridine (BrdU)-labeling and immunohistochemistry. Rats were adrenalectomized, allowed to survive for 1, 3, 7, and 14 days and given 100 mg/kg body wt BrdU 3 h before sacrifice. BrdU and adrenocorticotropic hormone (ACTH) were detected in the same sections of the anterior pituitary using double-labeling immunohistochemistry. BrdU-labeled cells in the pituitary showed a tendency to increase until 1 week after ADX and slightly decreased at 2 weeks. Corticotrophs were increased to about 1.5 times of the control level 1–2 weeks after ADX. The number of cells double-labeled with both BrdU and ACTH increased markedly after ADX, suggesting active mitosis of existing corticotrophs. On the other hand, the ratios of these double-stained cells to all BrdU-labeled cells and to all corticotrophs were 5–7% and 0.9–1.3%, respectively, even after ADX, suggesting that the majority of corticotrophs which were increased after ADX were recruited from some other type of immature cells. The extent to which the two mechanisms are involved in hyperplasia of corticotrophs after ADX remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号