首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Aim

To determine whether expression of a cyanobacterial flavodoxin in soil bacteria of agronomic interest confers protection against the widely used herbicides paraquat and atrazine.

Methods and Results

The model bacterium Escherichia coli, the symbiotic nitrogen‐fixing bacterium Ensifer meliloti and the plant growth‐promoting rhizobacterium Pseudomonas fluorescens Aur6 were transformed with expression vectors containing the flavodoxin gene of Anabaena variabilis. Expression of the cyanobacterial protein was confirmed by Western blot. Bacterial tolerance to oxidative stress was tested in solid medium supplemented with hydrogen peroxide, paraquat or atrazine. In all three bacterial strains, flavodoxin expression enhanced tolerance to the oxidative stress provoked by hydrogen peroxide and by the reactive oxygen species‐inducing herbicides, witnessed by the enhanced survival of the transformed bacteria in the presence of these oxidizing agents.

Conclusions

Flavodoxin overexpression in beneficial soil bacteria confers tolerance to oxidative stress and improves their survival in the presence of the herbicides paraquat and atrazine. Flavodoxin could be considered as a general antioxidant resource to face oxidative challenges in different micro‐organisms.

Significance and Impact of the study

The use of plant growth‐promoting rhizobacteria or nitrogen‐fixing bacteria with enhanced tolerance to oxidative stress in contaminated soils is of significant agronomic interest. The enhanced tolerance of flavodoxin‐expressing bacteria to atrazine and paraquat points to potential applications in herbicide‐treated soils.  相似文献   

3.
4.
The extracellular 373-kDa PehA heme peroxidase of Pseudomonas putida KT2440 has two enzymatic domains which depend on heme cofactor for their peroxidase activity. A null pehA mutant was generated to examine the impact of PehA in rhizosphere colonization competence and the induction of plant systemic resistance (ISR). This mutant was not markedly hampered in colonization efficiency. However, increase in pehA dosage enhanced colonization fitness about 30 fold in the root and 900 fold in the root apex. In vitro assays with purified His-tagged enzymatic domains of PehA indicated that heme-dependent peroxidase activity was required for the enhancement of root tip colonization. Evaluation of live/dead cells confirmed that overexpression of pehA had a positive effect on bacterial cell viability. Following root colonization of rice plants by KT2440 strain, the incidence of rice blast caused by Magnaporthe oryzae was reduced by 65% and the severity of this disease was also diminished in comparison to non-treated plants. An increase in the pehA dosage was also beneficial for the control of rice blast as compared with gene inactivation. The results suggest that PehA helps P. putida to cope with the plant-imposed oxidative stress leading to enhanced colonization ability and concomitant ISR-elicitation.  相似文献   

5.
We evaluated the preventive effects of Terminalia chebula (T. chebula) aqueous extract on oxidative and antioxidative status in liver and kidney of aged rats compared to young albino rats. The concentrations of malondialdehyde (MDA), lipofuscin (LF), protein carbonyls (PCO), activities of xantione oxidase (XO), manganese‐superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione‐S‐transferase (GST), and glucose‐6‐phosphate dehydrogenase (G6PDH), levels of glutathione (GSH), vitamin C and vitamin E were used as biomarkers. In the liver and kidney of aged animals, enhanced oxidative stress was accompanied by compromised antioxidant defences. Administration of aqueous extract of T. cheubla effectively modulated oxidative stress and enhanced antioxidant status in the liver and kidney of aged rats. The results of the present study demonstrate that aqueous extract of T. cheubla inhibits the development of age‐induced damages by protecting against oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Abdel Latef AA 《Mycorrhiza》2011,21(6):495-503
The effect of arbuscular mycorrhizal (AM) fungi inoculation on pepper (Capsicum annuum L. cv. Zhongjiao 105) plant growth and on some physiological parameters in response to increasing soil Cu concentrations was studied. Treatments consisted of inoculation or not with Glomus mosseae and the addition of Cu to soil at the concentrations of 0 (control), 2 (low), 4 (medium), and 8 (high) mM CuSO4. AM fungal inoculation decreased Cu concentrations in plant organs and promoted biomass yields as well as the contents of chlorophyll, soluble sugar, total protein, and the concentrations of P, K, Ca, and Mg. Plants grown in high Cu concentration exhibited a Cu-induced proline accumulation and also an increase in total free amino acid contents; however, both were lower in mycorrhizal pepper. Cu-induced oxidative stress by increasing lipid peroxidation rates and the activity of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and AM symbiosis enhanced these antioxidant enzyme activities and decreased oxidative damage to lipids. In conclusion G. mosseae was able to maintain an efficient symbiosis with pepper plants in contaminated Cu soils, improving plant growth under these conditions, which is likely to be due to reduced Cu accumulation in plant tissues, reduced oxidative stress and damage to lipids, or enhanced antioxidant capacity.  相似文献   

8.
Oxidative stress is a major threat for plants exposed to various environmental stresses. Previous studies found that transgenic potato plants expressing both copper zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) (referred to as SSA plants), or nucleoside diphosphate kinase 2 (NDPK2) (SN plants), showed enhanced tolerance to methyl viologen (MV)‐induced oxidative stress and high temperature. This study aimed to develop transgenic plants that were more tolerant of oxidative stress by introducing the NDPK2 gene into SSA potato plants under the control of an oxidative stress‐inducible peroxidase (SWPA2) promoter to create SSAN plants. SSAN leaf discs and whole plants showed enhanced tolerance to MV, as compared to SSA, SN or non‐transgenic (NT) plants. SSAN plants sprayed with 400 µM MV exhibited about 53 and 83% less visible damage than did SSA and SN plants, respectively. The expression levels of the CuZnSOD, APX and NDPK2 genes in SSAN plants following MV treatment correlated well with MV tolerance. SOD, APX, NDPK and catalase antioxidant enzyme activities were also increased in MV‐treated SSAN plants. In addition, SSAN plants were more tolerant to high temperature stress at 42°C, exhibiting a 6.2% reduction in photosynthetic activity as compared to plants grown at 25°C. In contrast, the photosynthetic activities of SN and SSA plants decreased by 50 and 18%, respectively. These results indicate that the simultaneous overexpression of CuZnSOD, APX and NDPK2 is more effective than single or double transgene expression for developing plants with enhanced tolerance to various environmental stresses.  相似文献   

9.
Cysteine metabolism with the subsequent release of anionic thiols has been shown to be involved in yeast cell morphogenesis of the dimorphic, pathogenic fungus Histoplasma capsulatum. Following transfer to fresh medium, intracellular thiol levels during the initial 2–4 h appear to determine the eventual growth form. Mild oxidative stress induced by paraquat (methyl viologen) caused enhanced intracellular and extracellular thiol production and an increase in protein thiol formation. Mildly stressed cells continued to grow in the yeast form. Severe oxidative stress induced by high concentrations of paraquat resulted in lowered thiol production as well as reversion to the alternate mycelial morphology. These results suggest that thiol modulation of intracellular protein status may be involved in morphogenesis of H. capsulatum.  相似文献   

10.
Although strobilurins are one of the most effective and broad spectrum classes of systemic fungicides, they may also increase plant stress tolerance by modulating the activity of antioxidant enzymes. To address this issue, the effect of azoxystrobin (Az) on the activity of antioxidant enzymes and on the concentrations of antioxidant metabolites and oxidative stress‐related compounds was studied in rice plants (cv. Metica‐1) either inoculated or not with Bipolaris oryzae, the causal agent of brown spot (BS). The Az minimally affected the enzyme activities, but consistently increased the glutathione reduced (GSH) concentrations in the noninoculated plants. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase were increased upon B. oryzae infection, but such increases were greatly limited in the Az‐sprayed plants. Catalase activity decreased in the inoculated plants compared to the noninoculated plants regardless of fungicide treatment. The GSH concentration increased in response to the B. oryzae infection, and the Az‐sprayed plants sustained higher levels of GSH at advanced stages of fungal infection than did the nonsprayed plants. The inoculated plants exhibited an extensive oxidative stress as evidenced by higher concentrations of hydrogen peroxide and malondialdehyde compared to the noninoculated plants, but lower and later increases were recorded in the Az‐sprayed plants than in the nonsprayed plants. Therefore, Az greatly reduces B. oryzae‐induced oxidative stress by limiting BS development rather than by activating antioxidant enzymes. The GSH, however, seems to be Az‐modulated, and this may partially explain the constrained oxidative stress observed in the Az‐sprayed plants.  相似文献   

11.
Salicylic acid (SA) as a signal molecule mediates many biotic and environmental stress-induced physiologic responses in plants. In this study we investigated the role of SA in regulating growth and oxidative stress in Malus robusta Rehd under both normoxic and hypoxic conditions. Hypoxia stress inhibited plant growth and dramatically reduced biomass. Addition of SA significantly alleviated the plant growth inhibition. The amounts of superoxide radicals (O2 ) and hydrogen peroxide (H2O2) significantly increased in leaves of the plants exposed to hypoxia stress and resulted in oxidative stress, which was indicated by accumulated concentration of malondialdehyde (MDA) and electrolyte leakage. Addition of SA significantly decreased the level of O2 , electrolyte leakage, and lipid peroxidation and enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) under hypoxia stress. As important antioxidants, ascorbate (AsA) and glutathione (GSH) contents in the plant leaves were slightly increased by SA treatment compared to hypoxia stress treatment alone. It was concluded that SA could alleviate the detrimental effects of hypoxia stress on plant growth and of oxidative stress by enhancing the antioxidant defense system in leaves of M. robusta Rehd.  相似文献   

12.
Drought stress is one of the most adverse conditions for plant growth and productivity. The plant antioxidant system is an important defense mechanism and includes antioxidant enzymes and low-molecular weight antioxidants. Understanding the biochemical and molecular responses to drought is essential for improving plant resistance to water-limited conditions. Previously, we isolated and characterized expressed sequence tags (ESTs) from a full-length enriched cDNA library prepared from fibrous roots of sweetpotato subjected to dehydration stress (Kim et al. in BMB Rep 42:271–276, [5]). In this study, we isolated and characterized 11 sweetpotato antioxidant genes from sweetpotato EST library under various abiotic stress conditions, which included six intracellular CuZn superoxide dismutases (CuZnSOD), ascorbate peroxidase, catalase, glutathione peroxidase (GPX), glutathione-S-transferase, thioredoxin (TRX), and five extracellular peroxidase genes. The expression of almost all the antioxidant genes induced under dehydration treatments occurred in leaves, with the exception of extracellular swPB6, whereas some antioxidant genes showed increased expression levels in the fibrous roots, such as intracellular GPX, TRX, extracellular swPA4, and swPB7 genes. During various abiotic stress treatments in leaves, such as exposure to NaCl, cold, and abscisic acid, several intracellular antioxidant genes were strongly expressed compared with the expression of extracellular antioxidant genes. These results indicated that some intracellular antioxidant genes, especially swAPX1 and CuZnSOD, might be specifically involved in important defense mechanisms against oxidative stress induced by various abiotic stresses including dehydration in sweetpotato plants.  相似文献   

13.
 Degradation of tetrachloroguaiacol is catalyzed by an extracellular enzyme, the laccase of the white-rot fungus Coriolus versicolor. This enzyme catalyzes the dechlorination of tetrachloroguaiacol and release of chloride ions. The pathway for the degradation was deduced from the intermediates produced by purified laccase and 18O-labeling experiments. The first step is demethylation. The resulting tetrachlorocatechol is dechlorinated to give 2,3,5-trichloro-6-hydroxy-p-benzoquinone, 2,5-dichloro-3,6-dihydroxy-p-benzoquinone, and dichloro-6-hydroxy-p-benzoquinone. Isotopic experiments established the mechanism of dechlorination of tetrachloroguaiacol by laccase. The laccase-catalyzed dechlorination is not caused by oxidative coupling but by nucleophilic substitution in which Cl- is released by water from cation radicals generated by laccase. Received: 25 August 1995/Received revision: 27 October 1995/Accepted: 20 November 1995  相似文献   

14.
The feasibility of combining the reductive dechlorination and oxidative mineralization of tetrachloroethene (PCE) within one system was investigated in non‐shaken methanotrophic batch cultivated cell suspensions. In the presence of up to 90% [v/v] methane and 10% [v/v] oxygen in the headspace, 200, 400 and 500 μmol/l PCE were completely dechlorinated over 100 days of incubation with 1% [v/v] activated sludge derived from a municipal wastewater treatment plant (equivalent to 6 mmol/l carbon). Meanwhile nearly 4 mol/l chloride were released to the medium for each mol PCE dechlorinated, indicating that the volatile chlorinated compound was completely dechlorinated in the cell suspensions. Irrespectively of the initial PCE concentration, 40 μmol/l trichloroethene were found temporarily. According to the initial PCE concentration, up to 160 μmol/l cis‐dichloroethene were measured in the assays with 500 μmol/l PCE. In the presence of oxygen in the headspace, simultaneously with the dechlorination, methane was oxidized. At 7%[v/v] methane and 10% [v/v] oxygen, 500 μmol/l PCE were dechlorinated to cDCE within 145 days. At PCE concentrations of 600 μmol/l or above, substrate inhibition occurred, and then both the dechlorination and the oxidation of methane were inhibited.  相似文献   

15.
16.
Enteromorpha compressa is the dominant species in coastal areas of northern Chile receiving copper mine wastes. Copper remains as the main heavy metal in these coastal waters and it is accumulated in E. compressa growing at the impacted sites. Algae from these sites showed higher levels of lipoperoxides than from non‐impacted sites, which suggests the occurrence of cellular damage resulting from oxidative stress. The strong activation of ascorbate peroxidase detected in this study probably occurs in order to buffer this oxidative stress. Unexpectedly, the activity of glutathione reductase, normally coupled to ascorbate peroxidase activity, was not affected by the chronic exposure to the mine wastes. Moreover, catalase, dehydroascorbate reductase and glutathione peroxidase, commonly reported to buffer oxidative stress in plants and algae, were not detected in E. compressa from any of the studied sites. Levels of total glutathione and phenolic compounds decreased in algae from mine‐impacted sites. In contrast, high levels of dehydroascorbate were found in algae from impacted sites, whereas ascorbate remained unchanged. Therefore, it is suggested that E. compressa tolerates a copper‐enriched environment, and the accompanying oxidative stress, through the accumulation of copper, activation of ascorbate peroxidase, synthesis of ascorbate (accumulated as dehydroascorbate) and consumption of glutathione and water‐soluble phenolic compounds.  相似文献   

17.
18.
SPINDLY (SPY) gene encodes a putative O-linked N-acetyl-glucosamine transferase, and yeast two-hybrid assay identified GIGANTEA (GI) as a SPY-interacting partner in Arabidopsis. GIGANTEA gene was previously shown to be involved in the regulation of oxidative stress response; however, it is unclear whether SPY gene is also involved in oxidative stress response. Here we showed that SPY plays a role in the regulation of the oxidative stress response. The spy-1 mutant was more tolerant to paraquat (PQ)-or hydrogen peroxide (H2O2)-mediated oxidative stress than wild-type plants. Analyses of endogenous H2O2 and superoxide anion radicals as well as lipid peroxidation revealed that enhanced tolerance of the spy-1 mutant to PQ-stress was not due to defects in the PQ uptake or the PQ sequestration from its site of action but rather the spy-1 mutation alleviated oxidative damage of plant cells upon PQ stress. Higher constitutive activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in spy-1 are more likely to be due to activation of both CSD2 gene encoding chloroplast Cu/Zn SOD and APX1 gene. Taken together, these results suggest that enhanced tolerance of the spy-1 mutant to oxidative stress is associated, at least in part, with constitutive activation of CSD2 and APX1. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 4, pp. 604–611. The text was submitted by the authors in English.  相似文献   

19.
Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non‐destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full‐length cDNAs encoding proteins with high homologies to GDSL‐lipase/esterase or acyl CoA‐binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications.  相似文献   

20.
Ortmann I  Moerschbacher BM 《Planta》2006,224(4):963-970
Induced disease resistance in plants is based on multiple mechanisms, including cell “priming”, i.e. an enhancement of the capacity to mobilize cellular defense responses upon pathogen attack. Potent inducers of priming are, for example, salicylic acid, synthetic compounds such as a benzothiadiazole, and certain rhizosphere bacteria. While priming is well characterized for a number of dicot plants, only few cases of priming are documented in monocots. Here, we report that the spent growth medium of the Gram negative bacterium Pantoea agglomerans is capable of priming wheat cells (Triticum aestivum L. cv Prelude-Sr5) for elicitor-induced defense responses. Pre-incubation of suspension-cultured wheat cells with growth medium of P. agglomerans led to a strong enhancement of an oxidative burst that has been induced by chitin or chitosan and to an increase in extracellular peroxidase activity. Moreover, exopolysaccharides (EPS) were isolated from the spent growth medium and demonstrated to be sufficient for the induction of H2O2 priming. The EPS-induced priming was shown to be time- and concentration-dependent. We conclude that EPS are the or one of several priming-active component(s) in the spent growth medium of P. agglomerans. The present work is the first report of priming in a monocot plant by a specific component of bacterial origin. A comparison with known chemical inducers of resistance revealed that a benzothiadiazole was able to enhance the oxidative burst similar to the spent growth medium or the EPS of P. agglomerans, while salicylic acid was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号