首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of Coliphage T5: Ultrastructural and Biochemical Studies   总被引:10,自引:5,他引:5       下载免费PDF全文
Electron microscopic studies of Escherichia coli infected with bacteriophage T5(+) have revealed that host nuclear material disappeared before 9 min after infection. This disappearance seemed to correspond to the breakdown of host deoxyribonucleic acid (DNA) into acid-soluble fragments. Little or no host DNA thymidine was reincorporated into phage DNA, except in the presence of 5-fluorodeoxyuridine (FUdR). Progeny virus particles were observed in the cytoplasm 20 min postinfection. Most of these particles were in the form of hexagonal-shaped heads or capsids, which were filled with electron-dense material (presumably T5 DNA). A small percentage (3 to 4%) of the phage heads appeared empty. On rare occasions, crystalline arrays of empty heads were observed. Nalidixic acid, hydroxyurea, and FUdR substantially inhibited replication of T5 DNA. However, these agents did not prevent virus-induced degradation of E. coli DNA. Most of the phage-specified structures seen in T5(+)-infected cells treated with FUdR or with nalidixic were in the form of empty capsids. Infected cells treated with hydroxyurea did not contain empty capsids. When E. coli F was infected with the DO mutant T5 amH18a (restrictive conditions), there was a small amount of DNA synthesis. Such cells contained only empty capsids, but their numbers were few in comparison to those in cells infected under permissive conditions or infected with T5(+). The cells also failed to lyse. These results confirm other reports which suggest that DNA replication is not required for the synthesis of late proteins. The data also indicate that DNA replication influences the quantity of viral structures being produced.  相似文献   

2.
The morphology of the intracellular development of bacteriophage phi25 in Bacillus subtilis 168M has been correlated with nucleic acid synthesis in infected cells. Host deoxyribonucleic acid (DNA) synthesis was shut off by a phage-induced enzyme within 5 min after infection, and another phage-mediated function extensively degraded host DNA at the time of cell lysis. Synthesis of phage DNA in infected cells began within 5 min and continued until late in the rise period. After phage DNA synthesis and coinciding with lysis, much of the unpackaged, newly synthesized phage DNA was degraded. Studies of thin sections of phi25 infected cells suggested that unfilled capsids may be precursors to filled capsids in the packaging process. To assess dependence of capsid formation on phage DNA replication, cells were either treated with mitomycin C and infected with normal phage or infected with ultraviolet-irradiated (99% killed) phi25. Only empty capsids were found in these cells, indicating that capsid production may be independent of the presence of newly synthesized viral DNA.  相似文献   

3.
Neither bacteriophage ?X174 single-stranded DNA synthesis nor phage growth was affected by rifampicin (200 μg/ml) once it started, whereas a low concentration of chloramphenicol (30 μg/ml) inhibited the phage growth when added in a late phase of infection. When rifampicin was added at a stage where double-stranded duplex (RF) DNA replication proceeded preferentially in the presence of chloramphenicol, or even after chloramphenicol was removed before the addition of rifampicin, both single-stranded DNA synthesis and phage growth were inhibited. These results suggest that RNA synthesis sensitive to rifampicin was necessary to initiate single-stranded DNA synthesis, but no longer needed once ?X174 DNA synthesis started.  相似文献   

4.
Regulation of Expression of Cloned Bacteriophage T4 Late Gene 23   总被引:5,自引:4,他引:1       下载免费PDF全文
The parameters governing the activity of the cloned T4 gene 23, which codes for the major T4 head protein, were analyzed. Suppressor-negative bacteria carrying wild-type T4 gene 23 cloned into plasmid pCR1 or pBR322 were infected with T4 gene 23 amber phage also carrying mutations in the following genes: (i) denA and denB (to prevent breakdown of plasmid DNA after infection) and (ii) denA, denB, and, in addition, 56 (to generate newly replicated DNA containing dCMP) and alc/unf (because mutations in this last gene allow late genes to be expressed in cytosine-containing T4 DNA). Bacteria infected with these phage were labeled with (14)C-amino acids at various times after infection, and the labeled proteins were separated by one-dimensional gel electrophoresis so that the synthesis of plasmid-coded gp23 could be compared with the synthesis of other, chromosome-coded T4 late proteins. We analyzed the effects of additional mutations that inactivate DNA replication proteins (genes 32 and 43), an RNA polymerase-binding protein (gene 55), type II topoisomerase (gene 52), and an exonuclease function involved in recombination (gene 46) on the synthesis of plasmid-coded gp23 in relation to chromosome-coded T4 late proteins. In the denA:denB:56:alc/unf genetic background, the phage chromosome-borne late genes followed the same regulatory rules (with respect to DNA replication and gp55 action) as in the denA:denB genetic background. The plasmid-carried gene 23 was also under gp55 control, but was less sensitive than the chromosomal late genes to perturbations of DNA replication. Synthesis of plasmid-coded gp23 was greatly inhibited when both the type II T4 topoisomerase and the host's DNA gyrase are inactivated. Synthesis of gp23 was also substantially affected by a mutation in gene 46, but less strongly than in the denA:denB genetic background. These observations are interpreted as follows. The plasmid-borne T4 gene 23 is primarily expressed from a late promoter. Expression of gene 23 from this late promoter responds to an activation event which involves some structural alteration of DNA. In these respects, the requirements for expressing the plasmid-borne gene 23 and chromosomal late genes are very similar (although in the denA:denB:56:alc/unf genetic background, there are significant quantitative differences). For the plasmid-borne gene 23, activation involves the T4 gp46, a protein which is required for DNA recombination. However, for the reasons presented in the accompanying paper (Jacobs et al., J. Virol. 39:31-45, 1981), we conclude that the activation of gene 23 does not require a complete breakage-reunion event which transposes that gene to a later promoter on the phage chromosome. Ways in which gp46 may actually be involved in late promoter activation on the plasmid are discussed.  相似文献   

5.
The effect on phage morphogenesis of sus mutations in the cistrons coding for nonstructural proteins has been studied. Mutants in three cistrons analyzed that are involved in phage DNA synthesis, as well as in cistron 16 which codes for a late nonstructural protein, produce prolate capsids which are more rounded at the corners than complete phage heads and have an internal core; they contain the head proteins, the upper collar protein and protein p7, not present in mature phage particles. Mutants in cistron 7 do not produce capsids nor other phage-related structures; this result and the presence of p7 in phage capsids suggest an essential role in capsid assembly for this protein. The protein product of cistron 13 is probably needed for a stable DNA encapsulation since mutants in this cistron produce mainly DNA-free complete phage particles and only about 10% of uninfective DNA-containing complete phage. Cistron 15 codes for a late, partially dispensable, nonstructural protein which is present in the DNA-free capsids produced after infection with the delayed-lysis mutant sus14(1242), used as the wild-type control, or with mutants in cistrons 9, 11,12 and 13. Proteins p15 and p16 are probably involved in the encapsulation of viral DNA in a prohead.  相似文献   

6.
The protein products of three adjacent P22 genes, 4, 10 and 26, are required for the stabilization of DNA newly packaged into P22 phage capsids. We have isolated unstable DNA containing capsids from cells infected with mutants defective in these genes. All three classes could be converted into mature phage in vitro, confirming that they represent intermediates in particle maturation. The first of the three proteins to add to the newly filled capsids is gp4, followed by gp10 and gp26. The active form of gp4 sediments at 3 S, while the active forms of both gp10 and gp26 sediment at 5 S. These soluble subunits appear to polymerize onto the newly filled capsids to form the neck of the mature phage, the channel for DNA injection. Since gp4 is the first protein to act after DNA packaging, the unstable DNA containing capsids from 4- -infected cells must represent the direct product of the packaging of DNA into procapsids. The major fraction of these capsids lost activity with a half-life of 1.1 minutes at 23 degrees C, though they were much more stable at 0 degree C. Electron microscopic observations indicated that the loss of activity was due to the DNA exiting from the incomplete capsids. The marginal stability of the condensed DNA molecules within capsids is consistent with models of ATP-driven condensation and spontaneous DNA ejection. The basis of the stability of these highly condensed molecules remains to be determined.  相似文献   

7.
At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication.  相似文献   

8.
SaPI1 and SaPIbov1 are chromosomal pathogenicity islands in Staphylococcus aureus that carry tst and other superantigen genes. They are induced to excise and replicate by certain phages, are efficiently encapsidated in SaPI-specific small particles composed of phage virion proteins and are transferred at very high frequencies. In this study, we have analysed three SaPI genes that are important for the phage–SaPI interaction, int (integrase) terS (phage terminase small subunit homologue) and pif (phage interference function). SaPI1 int is required for SaPI excision, replication and packaging in a donor strain, and is required for integration in a recipient. A SaPI1 int mutant, following phage induction, produces small SaPI-specific capsids which are filled with partial phage genomes. SaPIbov1 DNA is efficiently packaged into full-sized phage heads as well as into SaPI-specific small ones, whereas SaPI1 DNA is found almost exclusively in the small capsids. TerS, however, determines DNA packaging specificity but not the choice of large versus small capsids. This choice is influenced by SaPIbov1 gene 12, which prevents phage DNA packaging into small capsids, and which is also primarily responsible for interference by SaPIbov1 with phage reproduction.  相似文献   

9.
P4 is a satellite phage which relies on a helper such as P2 to supply the gene products necessary for particle construction and cell lysis (Six, 1975). P4 can activate the expression of late genes from a P2 helper phage, using a mechanism different from that employed by the helper. In the presence of P4, replication of P2 DNA is not required for late gene expression (Six & Lindqvist, 1971), and the polar effects of P2 amber mutations are suppressed.Despite its small size P4 codes for two late proteins as well as two early proteins. One of the P4 early proteins is that the product of gene α. The expression of P4 late genes is stimulated by the helper phage. Thus the P2 and P4 chromosomes exhibit reciprocal transactivation.The presence of the P4 genome causes the P2 head proteins to form a head smaller than that found after infection by P2 (Gibbs et al., 1973). P4 late proteins associate with head-like structures and may determine the small size of P4 heads.  相似文献   

10.
11.
The S-M checkpoint is an intracellular signaling pathway that ensures that mitosis is not initiated in cells undergoing DNA replication. We identified cid1, a novel fission yeast gene, through its ability when overexpressed to confer specific resistance to a combination of hydroxyurea, which inhibits DNA replication, and caffeine, which overrides the S-M checkpoint. Cid1 overexpression also partially suppressed the hydroxyurea sensitivity characteristic of DNA polymerase delta mutants and mutants defective in the "checkpoint Rad" pathway. Cid1 is a member of a family of putative nucleotidyltransferases including budding yeast Trf4 and Trf5, and mutation of amino acid residues predicted to be essential for this activity resulted in loss of Cid1 function in vivo. Two additional Cid1-like proteins play similar but nonredundant checkpoint-signaling roles in fission yeast. Cells lacking Cid1 were found to be viable but specifically sensitive to the combination of hydroxyurea and caffeine and to be S-M checkpoint defective in the absence of Cds1. Genetic data suggest that Cid1 acts in association with Crb2/Rhp9 and through the checkpoint-signaling kinase Chk1 to inhibit unscheduled mitosis specifically when DNA polymerase delta or epsilon is inhibited.  相似文献   

12.
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum . Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiae o rigin r ecognition c omplex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.  相似文献   

13.
14.
15.
A derivative of bacteriophage lambda containing a colicin E1 plasmid replicon was constructed by recombinant DNA techniques. This phage, lambdacol100, has two functional modes of DNA replication; it can replicate via either plasmid or phage replication systems. lambdacol100 has been used to introduce the colicin E1 plasmid replicon into Escherichia coli previously treated with chloramphenicol to block protein synthesis. Under these conditions, lambdacol100 DNA is replicated normally as a colicin E1 plasmid. This suggests that colicin E1 plasmid replication in vivo does not require any plasmid-encoded proteins.  相似文献   

16.
Hydroxyurea inhibited the replication of bacteriophage T4 in Escherichia coli B. The concentration of hydroxyurea required to inhibit net deoxyribonucleic acid (DNA) synthesis 50% was about 50-fold less than that required in uninfected cells. Even in the presence of high hydroxyurea concentrations, phage DNA was readily synthesized from the products of breakdown of the E. coli DNA, and viable phage were made. Deoxyribonucleotide, but not ribonucleotide, synthesis was strongly inhibited in the presence of hydroxyurea. The data indicate that hydroxyurea specifically inhibits de novo DNA synthesis in E. coli infected with bacteriophage T4 by inhibiting the ribonucleoside diphosphate reductase system, but does not affect DNA synthesis at subsequent steps.  相似文献   

17.
Defining a bacteriophage T4 late promoter: absence of a "-35" region   总被引:39,自引:0,他引:39  
T Elliott  E P Geiduschek 《Cell》1984,36(1):211-219
  相似文献   

18.
19.
Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号