首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mismatch repair proteins act during double-strand break repair (DSBR) to correct mismatches in heteroduplex DNA, to suppress recombination between divergent sequences, and to promote removal of nonhomologous DNA at DSB ends. We investigated yeast Msh2p association with recombination intermediates in vivo using chromatin immunoprecipitation. During DSBR involving nonhomologous ends, Msh2p localized strongly to recipient and donor sequences. Localization required Msh3p and was greatly reduced in rad50delta strains. Minimal localization of Msh2p was observed during fully homologous repair, but this was increased in rad52delta strains. These findings argue that Msh2p-Msh3p associates with intermediates early in DSBR to participate in the rejection of homeologous pairing and to stabilize nonhomologous tails for cleavage by Rad1p-Rad10p endonuclease.  相似文献   

2.
DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in vivo DSBR in single cells. Using this system, we demonstrate for the first time that Rad52 DNA repair foci and DSBs colocalize. Time-lapse microscopy reveals that the relocalization of Rad52 protein into a focal assembly is a rapid and reversible process. In addition, analysis of DNA damage checkpoint-deficient cells provides direct evidence for coordination between DNA repair and subsequent release from checkpoint arrest. Finally, analyses of cells experiencing multiple DSBs demonstrate that Rad52 foci are centres of DNA repair capable of simultaneously recruiting more than one DSB.  相似文献   

3.
The Rad50 hook domain is a critical determinant of Mre11 complex functions   总被引:1,自引:0,他引:1  
The Mre11 complex (in Saccharomyces cerevisiae: Mre11, Rad50 and Xrs2) influences multiple facets of chromosome break metabolism. A conserved feature of the Mre11 complex is a zinc-coordinating motif in Rad50 called the Rad50 hook. We established a diploid yeast strain, rad50(hook), in which Rad50 is encoded in halves, one from each of the two RAD50 alleles, with the residues constituting the hook deleted. In all respects, rad50(hook) phenocopies complete Rad50 deficiency. Replacing the hook domain with a ligand-inducible FKBP dimerization cassette partially mitigated all phenotypes in a ligand-dependent manner. The data indicate that the Rad50 hook is critical for Mre11 complex-dependent DNA repair, telomere maintenance and meiotic double-strand break formation. Sister chromatid cohesion was unaffected by Rad50 deficiency, suggesting that molecular bridging required for recombinational DNA repair is qualitatively distinct from cohesin-mediated sister chromatid cohesion.  相似文献   

4.
The Saccharomyces cerevisiae Rad50-Mre11-Xrs2 complex plays a central role in the cellular response to DNA double strand breaks. Rad50 has a globular ATPase head domain with a long coiled-coil tail. DNA binding by Rad50 is ATP-dependent and the Rad50-Mre11-Xrs2 complex possesses DNA unwinding and endonuclease activities that are regulated by ATP. Here we have examined the role of the Rad50 Walker type A ATP binding motif in DNA double strand break repair by a combination of genetic and biochemical approaches. Replacement of the conserved lysine residue within the Walker A motif with alanine, glutamate, or arginine results in the same DNA damage sensitivity and homologous recombination defect as the rad50 deletion mutation. The Walker A mutations also cause a deficiency in non-homologous end-joining. As expected, complexes containing the rad50 Walker A mutant proteins are defective in ATPase, ATP-dependent DNA unwinding, and ATP-stimulated endonuclease activities. Although the DNA end-bridging activity of the Rad50-Mre11-Xrs2 complex is ATP-independent, the end-bridging activity of complexes containing the rad50 Walker A mutant proteins is salt-sensitive. These results provide a molecular explanation for the observed in vivo defects of the rad50 Walker mutant strains and reveal a novel ATP-independent function for Rad50 in DNA end-bridging.  相似文献   

5.
The rad50 signature motif: essential to ATP binding and biological function   总被引:1,自引:0,他引:1  
The repair of double-strand breaks in DNA is an essential process in all organisms, and requires the coordinated activities of evolutionarily conserved protein assemblies. One of the most critical of these is the Mre11/Rad50 (M/R) complex, which is present in all three biological kingdoms, but is not well-understood at the biochemical level. Previous structural analysis of a Rad50 homolog from archaebacteria illuminated the catalytic core of the enzyme, an ATP-binding domain related to the ABC transporter family of ATPases. Here, we present the crystallographic structure of the Rad50 mutant S793R. This missense signature motif mutation changes the key serine residue in the signature motif that is conserved among Rad50 homologs and ABC ATPases. The S793R mutation is analogous to the mutation S549R in the cystic fibrosis transmembrane conductance regulator (CFTR) that results in cystic fibrosis. We show here that the serine to arginine change in the Rad50 protein prevents ATP binding and disrupts the communication among the other ATP-binding loops. This structural change, in turn, alters the communication between Rad50 monomers and thus prevents Rad50 dimerization. The equivalent mutation was made in the human Rad50 gene, and the resulting mutant protein did form a complex with Mre11 and Nbs1, but was specifically deficient in all ATP-dependent enzymatic activities. This signature motif structure-function homology extends to yeast, because the same mutation introduced into the Saccharomyces cerevisiae RAD50 gene generated an allele that failed to complement a rad50 deletion strain in DNA repair assays in vivo. These structural and biochemical results extend our understanding of the Rad50 catalytic domain and validate the use of the signature motif mutant to test the role of Rad50 ATP binding in diverse organisms.  相似文献   

6.
The Mre11–Rad50–Nbs1 (MRN) complex is a central factor in the repair of DNA double‐strand breaks (DSBs). The ATP‐dependent mechanisms of how MRN detects and endonucleolytically processes DNA ends for the repair by microhomology‐mediated end‐joining or further resection in homologous recombination are still unclear. Here, we report the crystal structures of the ATPγS‐bound dimer of the Rad50NBD (nucleotide‐binding domain) from the thermophilic eukaryote Chaetomium thermophilum (Ct) in complex with either DNA or CtMre11RBD (Rad50‐binding domain) along with small‐angle X‐ray scattering and cross‐linking studies. The structure and DNA binding motifs were validated by DNA binding experiments in vitro and mutational analyses in Saccharomyces cerevisiae in vivo. Our analyses provide a structural framework for the architecture of the eukaryotic Mre11–Rad50 complex. They show that a Rad50 dimer binds approximately 18 base pairs of DNA along the dimer interface in an ATP‐dependent fashion or bridges two DNA ends with a preference for 3′ overhangs. Finally, our results may provide a general framework for the interaction of ABC ATPase domains of the Rad50/SMC/RecN protein family with DNA.  相似文献   

7.
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.  相似文献   

8.
DNA double-strand breaks (DSBs) threaten genome stability in all kingdoms of life and are linked to cancerogenic chromosome aberrations in humans. The Mre11:Rad50 (MR) complex is an evolutionarily conserved complex of two Rad50 ATPases and a dimer of the Mre11 nuclease that senses and processes DSBs and tethers DNA for repair. ATP binding and hydrolysis by Rad50 is functionally coupled to DNA-binding and tethering, but also regulates Mre11's nuclease in processing DNA ends. To understand how ATP controls the interaction between Mre11 and Rad50, we determined the crystal structure of Thermotoga maritima (Tm) MR trapped in an ATP/ADP state. ATP binding to Rad50 induces a large structural change from an open form with accessible Mre11 nuclease sites into a closed form. Remarkably, the NBD dimer binds in the Mre11 DNA-binding cleft blocking Mre11's dsDNA-binding sites. An accompanying large swivel of the Rad50 coiled coil domains appears to prepare the coiled coils for DNA tethering. DNA-binding studies show that within the complex, Rad50 likely forms a dsDNA-binding site in response to ATP, while the Mre11 nuclease module retains a ssDNA-binding site. Our results suggest a possible mechanism for ATP-dependent DNA tethering and DSB processing by MR.  相似文献   

9.
The MR (Mre11 nuclease and Rad50 ABC ATPase) complex is an evolutionarily conserved sensor for DNA double-strand breaks, highly genotoxic lesions linked to cancer development. MR can recognize and process DNA ends even if they are blocked and misfolded. To reveal its mechanism, we determined the crystal structure of the catalytic head of Thermotoga maritima MR and analyzed ATP-dependent conformational changes. MR adopts an open form with a central Mre11 nuclease dimer and two peripheral Rad50 molecules, a form suited for sensing obstructed breaks. The Mre11 C-terminal helix-loop-helix domain binds Rad50 and attaches flexibly to the nuclease domain, enabling large conformational changes. ATP binding to the two Rad50 subunits induces a rotation of the Mre11 helix-loop-helix and Rad50 coiled-coil domains, creating a clamp conformation with increased DNA-binding activity. The results suggest that MR is an ATP-controlled transient molecular clamp at DNA double-strand breaks.  相似文献   

10.
The evolutionarily conserved heterotrimeric Mre11/Rad50/Xrs2 (Nbs1) (MRX/N) complex plays a central role in an array of cellular responses involving DNA damage, telomere length homeostasis, cell-cycle checkpoint control and meiotic recombination. The underlying biochemical functions of MRX/N complex, or each of its individual subunits, at telomeres and the importance of complex formation are poorly understood. Here, we show that the Saccharomyces cerevisiae MRX complex, or its subunits, display an overwhelming preference for G-quadruplex DNA than for telomeric single-stranded or double-stranded DNA implicating the possible existence of this DNA structure in vivo. Although these alternative DNA substrates failed to affect Rad50 ATPase activity, kinetic analyses revealed that interaction of Rad50 with Xrs2 and/or Mre11 led to a twofold increase in the rates of ATP hydrolysis. Significantly, we show that Mre11 displays sequence-specific double-stranded DNA endonuclease activity, and Rad50, but not Xrs2, abrogated endonucleolytic but not the exonucleolytic activity. This repression was alleviated upon ATP hydrolysis by Rad50, suggesting that complex formation between Rad50 and Mre11 might be important for blocking the inappropriate cleavage of genomic DNA. Mre11 alone, or in the presence of ATP, MRX, MR or MX sub-complexes cleaved at the 5' end of an array of G residues in single-stranded DNA, at G quartets in G4 DNA, and at the center of TGTG repeats in duplex DNA. We propose that negative regulation of Mre11 endonuclease activity by Rad50 might be important for native as well as de novo telomere length homeostasis.  相似文献   

11.
Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.  相似文献   

12.
RecF, together with RecO and RecR, belongs to a ubiquitous group of recombination mediators (RMs) that includes eukaryotic proteins such as Rad52 and BRCA2. RMs help maintain genome stability in the presence of DNA damage by loading RecA-like recombinases and displacing single-stranded DNA-binding proteins. Here, we present the crystal structure of RecF from Deinococcus radiodurans. RecF exhibits a high degree of structural similarity with the head domain of Rad50, but lacks its long coiled-coil region. The structural homology between RecF and Rad50 is extensive, encompassing the ATPase subdomain and the so-called 'Lobe II' subdomain of Rad50. The pronounced structural conservation between bacterial RecF and evolutionarily diverged eukaryotic Rad50 implies a conserved mechanism of DNA binding and recognition of the boundaries of double-stranded DNA regions. The RecF structure, mutagenesis of conserved motifs and ATP-dependent dimerization of RecF are discussed with respect to its role in promoting presynaptic complex formation at DNA damage sites.  相似文献   

13.
The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced ‘closed’ conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5′ strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks.  相似文献   

14.
The Mre11:Rad50 complex is central to DNA double strand break repair in the Archaea and Eukarya, and acts through mechanical and nuclease activities regulated by conformational changes induced by ATP binding and hydrolysis. Despite the widespread use of Mre11 and Rad50 from hyperthermophilic archaea for structural studies, little is known in the regulation of these proteins in the Archaea. Using purification and mass spectrometry approaches allowing nearly full sequence coverage of both proteins from the species Sulfolobus acidocaldarius, we show for the first time post‐translational methylation of the archaeal Mre11:Rad50 complex. Under basal growth conditions, extensive lysine methylations were identified in Mre11 and Rad50 dynamic domains, as well as methylation of a few aspartates and glutamates, including a key Mre11 aspartate involved in nuclease activity. Upon γ‐irradiation induced DNA damage, additional methylated residues were identified in Rad50, notably methylation of Walker B aspartate and glutamate residues involved in ATP hydrolysis. These findings strongly suggest a key role for post‐translational methylation in the regulation of the archaeal Mre11:Rad50 complex and in the DNA damage response.  相似文献   

15.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

16.
ATP‐dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double‐strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here, Methanococcus jannaschii MR‐ATPγS‐DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATPγS‐bound Rad50 nucleotide‐binding domains. Duplex DNA cannot access the Mre11 active site in the ATP‐free full‐length MR complex. ATP hydrolysis drives rotation of the nucleotide‐binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis‐driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.  相似文献   

17.
Germline mutations in DNA repair genes are linked to tumor progression. Furthermore, failure in either activating a DNA damage checkpoint or repairing programmed meiotic double-strand breaks (DSBs) can impair chromosome segregation. Therefore, understanding the molecular basis for DNA damage response (DDR) and DSB repair (DSBR) within the germline is highly important. Here we define ZTF-8, a previously uncharacterized protein conserved from worms to humans, as a novel factor involved in the repair of both mitotic and meiotic DSBs as well as in meiotic DNA damage checkpoint activation in the C. elegans germline. ztf-8 mutants exhibit specific sensitivity to γ-irradiation and hydroxyurea, mitotic nuclear arrest at S-phase accompanied by activation of the ATL-1 and CHK-1 DNA damage checkpoint kinases, as well as accumulation of both mitotic and meiotic recombination intermediates, indicating that ZTF-8 functions in DSBR. However, impaired meiotic DSBR progression partially fails to trigger the CEP-1/p53-dependent DNA damage checkpoint in late pachytene, also supporting a role for ZTF-8 in meiotic DDR. ZTF-8 partially co-localizes with the 9-1-1 DDR complex and interacts with MRT-2/Rad1, a component of this complex. The human RHINO protein rescues the phenotypes observed in ztf-8 mutants, suggesting functional conservation across species. We propose that ZTF-8 is involved in promoting repair at stalled replication forks and meiotic DSBs by transducing DNA damage checkpoint signaling via the 9-1-1 pathway. Our findings define a conserved function for ZTF-8/RHINO in promoting genomic stability in the germline.  相似文献   

18.
Mre11 and Rad50 are the catalytic components of a highly conserved DNA repair complex that functions in many aspects of DNA metabolism involving double-strand breaks. The ATPase domains in Rad50 are related to the ABC transporter family of ATPases, previously shown to share structural similarities with adenylate kinases. Here we demonstrate that Mre11/Rad50 complexes from three organisms catalyze the reversible adenylate kinase reaction in vitro. Mutation of the conserved signature motif reduces the adenylate kinase activity of Rad50 but does not reduce ATP hydrolysis. This mutant resembles a rad50 null strain with respect to meiosis and telomere maintenance in S. cerevisiae, correlating adenylate kinase activity with in vivo functions. An adenylate kinase inhibitor blocks Mre11/Rad50-dependent DNA tethering in vitro and in cell-free extracts, indicating that adenylate kinase activity by Mre11/Rad50 promotes DNA-DNA associations. We propose a model for Rad50 that incorporates both ATPase and adenylate kinase reactions as critical activities that regulate Rad50 functions.  相似文献   

19.
Genetic diversity in fungi and mammals is generated through mitotic double-strand break-repair (DSBR), typically involving homologous recombination (HR) or non-homologous end joining (NHEJ). Microhomology-mediated joining appears to serve a subsidiary function. The African trypanosome, a divergent protozoan parasite, relies upon rearrangement of subtelomeric variant surface glycoprotein (VSG) genes to achieve antigenic variation. Evidence suggests an absence of NHEJ but chromosomal repair remains largely unexplored. We used a system based on I-SceI meganuclease and monitored temporally constrained DSBR at a specific chromosomal site in bloodstream form Trypanosoma brucei. In response to the lesion, adjacent single-stranded DNA was generated; the homologous strand-exchange factor, Rad51, accumulated into foci; a G2M checkpoint was activated and >50% of cells displayed successful repair. Quantitative analysis of DSBR pathways employed indicated that inter-chromosomal HR dominated. HR displayed a strong preference for the allelic template but also the capacity to interact with homologous sequence on heterologous chromosomes. Intra-chromosomal joining was predominantly, and possibly exclusively, microhomology mediated, a situation unique among organisms examined to date. These DSBR pathways available to T. brucei likely underlie patterns of antigenic variation and the evolution of the vast VSG gene family.  相似文献   

20.
Herdendorf TJ  Nelson SW 《Biochemistry》2011,50(27):6030-6040
The repair of DNA double-strand breaks (DSBs) is essential to maintaining the integrity of the genome, and organisms have evolved a conserved mechanism to facilitate their repair. In eukaryotes, archaea, and some bacteriophage, a complex made up of Mre11 and Rad50 (MR complex), which are a nuclease and ATPase, respectively, is involved in the initial processing of DSBs. Rad50 is a member of the ATP Binding Cassette (ABC) protein superfamily, the members of which contain an important Signature motif that acts in trans to complete the dimeric ATP binding site. To explore the functional relevance of this motif, four of its five residues were mutated in bacteriophage T4 Rad50, and their respective ATPase and nuclease activities were evaluated. The mutations reveal the functional roles of the Signature motif in ATP binding, hydrolysis, and cooperativity. In several mutants, the degree of DNA activation of ATP hydrolysis activity is reduced, indicating that the Signature motif is involved in allosteric signal transmission between the DNA and ATP binding sites of the MR complex. ATP hydrolysis is not required for nuclease activity when the probe is near the beginning of the DNA substrate; however, when an internal probe is used, decreases in ATPase activity have substantial effects on nuclease activity, suggesting that ATP hydrolysis is involved in translocation of the complex. Unexpectedly, the ATP hydrolysis and nuclease activities are not directly correlated with each other, and each mutation appears to differentially affect the exonuclease activity of Mre11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号