首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosome RNA editing is a massive processing of mRNA by U deletion and U insertion, directed by trans-acting guide RNAs (gRNAs). A U deletion cycle and a U insertion cycle have been reproduced in vitro using synthetic ATPase (A6) pre-mRNA and gRNA. Here we examine which gRNA features are important for this U deletion. We find that, foremost, this editing depends critically on the single-stranded character of a few gRNA and a few mRNA residues abutting the anchor duplex, a feature not previously appreciated. That plus any base-pairing sequence to tether the upstream mRNA are all the gRNA needs to direct unexpectedly efficient in vitro U deletion, using either the purified editing complex or whole extract. In fact, our optimized gRNA constructs support faithful U deletion up to 100 times more efficiently than the natural gRNA, and they can edit the majority of mRNA molecules. This is a marked improvement of in vitro U deletion, in which previous artificial gRNAs were no more active than natural gRNA and the editing efficiencies were at most a few percent. Furthermore, this editing is not stimulated by most other previously noted gRNA features, including its potential ligation bridge, 3' OH moiety, any U residues in the tether, the conserved structure of the central region, or proteins that normally bind these regions. Our data also have implications about evolutionary forces active in RNA editing.  相似文献   

2.
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.  相似文献   

3.
4.
Editing of mitochondrial mRNAs in kinetoplastid protozoa occurs by a series of enzymatic steps that insert and delete uridylates (U's) as specified by guide RNAs (gRNAs). The characteristics of the 3" exonuclease activity that removes the U's following cleavage during deletion editing were determined by using an in vitro precleaved deletion assay that is based on ATPase subunit 6 pre-mRNA and gA6[14] gRNA. The exonuclease in partially purified editing complexes is specific for U's. The specificity occurs in the absence of gRNA, but its activity is enhanced by the presence of gRNA. The 3" pre-mRNA fragment enhances the specificity, but not the efficiency, of U removal. The activity is sensitive to the 5" phosphate of the 3" fragment, which is not required for U removal. The ability of the 3" U's to base pair with purines in the gRNA protects them from removal, suggesting that the U-specific 3" exonuclease (exoUase) is specific for U's which are not base paired. ExoUase is stereospecific and cannot remove (Rp)α-thio-U. The specificity of the exoUase activity thus contributes to the precision of RNA editing.  相似文献   

5.
6.
7.
8.
RNA editing in kinetoplastids, the specific insertion and deletion of U residues, requires endonuclease cleavage of the pre-mRNA at each cycle of insertion/deletion. We have resolved three endoribonuclease activities from Trypanosoma brucei mitochondrial extracts that cleave CYb pre-mRNA specifically. One of these, which sediments at approximately 20S and is not affected substantially by DTT, has all the features of the editing endonuclease. It cleaves CYb pre-edited or partially edited mRNA only when annealed to the anchor region of a cognate guide RNA (gRNA), and it cleaves accurately just 5' of the duplex region. Its specificity is for the 5' end of extended duplex RNA regions, and this prevents cleavage of the gRNA or other positions in the mRNA. This gRNA-directed nuclease is evidently the same activity that functions in A6 pre-mRNA editing. However, it is distinct and separable from a previously observed DTT-requiring endonuclease that sediments similarly under certain conditions, but does not cleave precisely at the first editing site in either the presence or absence of a gRNA. The editing nuclease is also distinct from a DTT-inhibited endonuclease that cleaves numerous free pre-mRNAs at a common structure in the region of the first editing site.  相似文献   

9.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

10.
RNA editing in Trypanosoma brucei inserts and deletes uridylates (U's) in mitochondrial pre-mRNAs under the direction of guide RNAs (gRNAs). We report here the development of a novel in vitro precleaved editing assay and its use to study the gRNA specificity of the U addition and RNA ligation steps in insertion RNA editing. The 5' fragment of substrate RNA accumulated with the number of added U's specified by gRNA, and U addition products with more than the specified number of U's were rare. U addition up to the number specified occurred in the absence of ligation, but accumulation of U addition products was slowed. The 5' fragments with the correct number of added U's were preferentially ligated, apparently by adenylylated RNA ligase since exogenously added ATP was not required and since ligation was eliminated by treatment with pyrophosphate. gRNA-specified U addition was apparent in the absence of ligation when the pre-mRNA immediately upstream of the editing site was single stranded and more so when it was base paired with gRNA. These results suggest that both the U addition and RNA ligation steps contributed to the precision of RNA editing.  相似文献   

11.
In recent years major progress has been made in elucidating the mechanism and structure of catalytic RNA molecules, and we are now beginning to understand ribozymes well enough to turn them into useful tools. Work in our laboratory has focused on the development of twin ribozymes for site-specific RNA sequence alteration. To this end, we followed a strategy that relies on the combination of two ribozyme units into one molecule (hence dubbed twin ribozyme). Here, we present reverse-joined hairpin ribozymes that are structurally optimized and which, in addition to cleavage, catalyse efficient RNA ligation. The most efficient variant ligated its appropriate RNA substrate with a single turnover rate constant of 1.1 min(-1) and a final yield of 70%. We combined a reverse-joined hairpin ribozyme with a conventional hairpin ribozyme to create a twin ribozyme that mediates the insertion of four additional nucleotides into a predetermined position of a substrate RNA, and thus mimics, at the RNA level, the repair of a short deletion mutation; 17% of the initial substrate was converted to the insertion product.  相似文献   

12.
A region of c-myc mRNA was identified which permitted very efficient antisense effects to be achieved in living cells using chimeric methylphosphonate--phosphodiester antisense effectors. Novel inosine--containing ribozymes (which cleave after NCH triplets) were directed to an ACA triplet within this region and delivered into living cells. No ribozyme intracellular activity could be identified. Very low ribozyme function was also observed in in vitro assays using a 1700nt substrate RNA.  相似文献   

13.
14.
A hammerhead ribozyme directed against murine TNFalpha (mTNFalpha) mRNA has been constructed. In vitro studies showed that this ribozyme was released from the parent molecule by flanking cis-acting hammerhead and hairpin ribozymes. This same anti-mTNFalpha ribozyme specifically cleaved both synthetically derived substrate RNA and mTNFalpha mRNA within a pool of total cellular RNA. Endogenous delivery of this anti-mTNFalpha ribozyme via the self-cleaving cassette reduced mTNFalpha mRNA and protein levels in lipopolysaccharide (LPS)-stimulated, stably transfected murine macrophage RAW 264.7 cells. When complexed to liposomes and exogenously delivered to mouse peritoneal macrophages, the same ribozyme, with and without the cis-acting ribozymes, reduced mTNFalpha protein levels. However, an irrelevant ribozyme delivered in an identical fashion was also effective at reducing mTNFalpha protein levels. These data suggest that anti-mTNFalpha ribozymes can be constructed which efficiently cleave mTNFalpha mRNA, but irrelevant RNA/liposome complexes also effectively limit TNFalpha mRNA expression and can mimic functional ribozyme activity under in vitro conditions.  相似文献   

15.
16.
RNA editing inserts and deletes uridylates (U's) in kinetoplastid mitochondrial pre-mRNAs by a series of enzymatic steps. Small guide RNAs (gRNAs) specify the edited sequence. Editing, though sometimes extensive, is precise. The effects of mutating pre-mRNA and gRNA sequences in, around, and upstream of the editing site on the specificity and efficiency of in vitro insertion editing were examined. U's could be added opposite guiding pyrimidines, but guiding purines, particularly A's, were required for efficient ligation. A base pair between mRNA and gRNA immediately upstream of the editing site was not required for insertion editing, although it greatly enhanced its efficiency and accuracy. In addition, a gRNA/mRNA duplex upstream of the editing site enhanced insertion editing when it was close to the editing site, but prevented cleavage, and hence editing, when immediately adjacent to the editing site. Thus, several aspects of mRNA-gRNA interaction, as well as gRNA base pairing with added U's, optimize editing efficiency, although they are not required for insertion editing.  相似文献   

17.
Guide RNAs (gRNAs) are small RNAs that provide specificity for uridine addition and deletion during mRNA editing in trypanosomes. Terminal uridylyl transferase (TUTase) adds uridines to pre-mRNAs during RNA editing and adds a poly(U) tail to the 3' end of gRNAs. The poly(U) tail may stabilize the association of gRNAs with cognate mRNA during editing. Both TUTase and gRNAs associate with two ribonucleoprotein complexes, I (19S) and II (35S to 40S). Complex II is believed to be the fully assembled active editing complex, since it contains pre-edited mRNA and enzymes thought necessary for editing. Purification of TUTase from mitochondrial extracts resulted in the identification of two chromatographically distinct TUTase activities. Stable single-uridine addition to different substrate RNAs is performed by the 19S complex, despite the presence of a uridine-specific 3' exonuclease within this complex. Multiple uridines are added to substrate RNAs by a 10S particle that may be an unstable subunit of complex I lacking the uridine-specific 3' exonuclease. Multiple uridines could be stably added onto gRNAs by complex I when the cognate mRNA is present. We propose a model in which the purine-rich region of the cognate mRNA protects the uridine tail from a uridine exonuclease activity that is present within the complex. To test this model, we have mutated the purine-rich region of the pre-mRNA to abolish base-pairing interaction with the poly(U) tail of the gRNA. This RNA fails to protect the uridine tail of the gRNA from exoribonucleolytic trimming and is consistent with a role for the purine-rich region of the mRNA in gRNA maturation.  相似文献   

18.
19.
M E Harris  S L Hajduk 《Cell》1992,68(6):1091-1099
RNA editing in the kinetoplastid Trypanosoma brucei results in the addition and deletion of uridine residues within several mitochondrial mRNAs. The site and number of uridines added appears to be directed by small (approximately 70 nt) guide RNAs (gRNAs), which can base pair to the edited sequences. We examined reactions involving synthetic cytochrome b (CYb) gRNA and pre-edited mRNA in vitro. A major product of the in vitro reaction is a chimeric RNA molecule containing both gRNA and mRNA sequences. Formation of the CYb gRNA-mRNA chimera was specific, since such molecules did not accumulate when either the gRNA or mRNA was substituted with control RNAs. The reaction required a free 3' hydroxyl on the gRNA and was unaffected by capping of the gRNA's 5' end. Direct RNA sequencing indicated that the CYb gRNA is covalently linked via its 3' poly(U) tail to one of the editing sites on the CYb mRNA. These results suggest that the U's added during editing are donated by the poly(U) tail of a gRNA via a chimeric gRNA-mRNA intermediate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号