首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
突变体p53研究进展   总被引:4,自引:0,他引:4  
李大虎  张令强  贺福初 《遗传》2008,30(6):697-703
抑癌基因突变是癌症发生过程中一个极为关键的事件。p53作为体内最重要的抑癌基因之一, 在人类癌症中发生突变的频率高达50%。同时, p53突变也是人类遗传病Li-Fraumeni综合征的主要病因。p53最常见的突变形式是错义突变, 所形成的突变体p53不但失去了野生型p53的抑癌功能, 而且还获得了一系列类似于癌基因的功能, 促进了肿瘤的进程。文章拟对突变体p53的结构功能改变, 获得癌基因活性的分子机制, 以及近年来对封闭突变体p53活性所进行的探索等研究方向所取得的进展做一综述。  相似文献   

3.
4.
Background. Epidemiological studies have shown a correlation between Helicobacter pylori infection and human gastric carcinogenesis. A Mongolian gerbil model has demonstrated that H. pylori infection induced gastric carcinoma. However, the disadvantage of this animal model is a lack of information regarding the cellular genes involved in oncogenesis. Mutation of the p53 gene is one of the most common steps in gastric carcinogenesis. In this study, we aimed to clone the p53 gene of the Mongolian gerbil and detect the functional mutations in H. pylori‐infected animals. Materials and Methods. The p53 complementary DNA (cDNA) of Mongolian gerbil was cloned by the methods of reverse‐transcribed polymerase chain reaction and rapid amplification of cDNA ends. Results. The p53 cDNA of Mongolian gerbil has a 78.8% homology to that of humans. A novel yeast p53 assay system was established and enabled to detect the functional mutations of the p53 gene in the stomach of the Mongolian gerbil. Conclusions. This is the first report of the complete sequence of wild‐type p53 cDNA of the Mongolian gerbil. This genetic information and an assay system designed to detect the functional mutations of the p53 gene are useful for further investigations of gastric oncogenesis in this animal model.  相似文献   

5.
Several lines of evidence have suggested that some naturally occurring mutations of hepatitis B virus (HBV) play a critical role in hepatocellular carcinoma (HCC). Here, we describe a novel HCC-related pre-S2 mutation, F141L. To prove the relationship between the F141L mutation and HCC, molecular epidemiology studies using MboII PCR restriction analysis (PRA) were performed, and the molecular mechanism was investigated through construction of a stable hepatocyte cell line expressing the large surface HB protein (LHB) with the F141L mutation (F141L-LHB). Application of MboII PRA to samples from 241 Korean patients with chronic liver diseases of different clinical stages confirmed that F141L mutants were significantly related to HCC, even in comparison to liver cirrhosis (HCC, 26.3% of patients, or 26/99; liver cirrhosis, 3.8% of patients, or 2/52; P = 0.001). By studying stable cell lines, we found that F141L-LHBs could induce cell cycle progression by downregulating the p53 and p21 pathways and upregulating CDK4 and cyclin A. Furthermore, we found that in a colony-forming assay, the colony-forming rates in cell lines expressing F141L-LHBs were about twice as high as those of the wild type. In conclusion, our results suggest that F141L-LHBs may contribute importantly to the pathogenesis of HCC by inducing cell proliferation and transformation. So, the F141L mutation examined in this study could serve as a diagnostic marker for the prognosis of HCC.  相似文献   

6.
Butyrate as a model for "gene-regulating chemoprevention and chemotherapy."   总被引:6,自引:0,他引:6  
Recent progress in molecular genetics has facilitated understanding of the mechanisms of carcinogenesis. However, there is not yet any effective therapy or prevention for cancer based on the molecular mechanisms of carcinogenesis. So-called "gene therapy" for cancer is expected to become a new method of treatment, but there are still several serious problems with gene therapy. As a matter of fact, it seems impossible to adopt gene therapy for prevention. We therefore tried to develop a different method of cancer prevention or therapy based on the molecular mechanisms of carcinogenesis. For instance, the tumor-suppressor gene p53 is mutated in about 50% of human malignancies. It is known that p53 stimulates the promoter activities of p21/WAF1, gadd45 and bax genes, resulting in cell cycle arrest, DNA repair and apoptosis, respectively. Therefore, chemical compounds that can stimulate these genes should compensate for the function of p53. As a model of this, we found that histone deacetylase inhibitors such as butyrate or trichostatin A dramatically stimulate the p21/WAF1 gene promoter through the Spl sites, resulting in cell cycle arrest. Interestingly, another group has recently reported that phenylbutyrate, which is also known as a histone deacetylase inhibitor, is very effective for leukemia patients. We therefore consider methods of up-regulating p21/WAF, gadd45 or bax genes should be useful for cancer therapy and termed this method "Gene-regulating chemotherapy". Theoretically, the chemicals up-regulating such genes should be also useful for chemoprevention, and we also termed it as "Gene-regulating chemoprevention". In conclusion, we propose that "Gene-regulating chemotherapy or chemoprevention" may be a promising new method for cancer therapy or prevention and histone deacetylase inhibitor is a good candidate for this method.  相似文献   

7.
Carcinogenesis is a multi-step series of somatic genetic events. The complexity of this multi-hit process makes it difficult to determine each single event and the definitive outcome of such events. To investigate the genetic alterations in cancer-related genes, sensitive and reliable detection methods are of major importance for generating relevant results. Another critical issue is the quality of starting material which largely affects the outcome of the analysis. Microdissection of cells defined under the microscope ensures a selection of representative material for subsequent genetic analysis. Skin cancer provides an advantageous model for studying the development of cancer. Detectable lesions occur early during tumor progression, facilitating molecular analysis of the cell populations from both preneoplastic and neoplastic lesions. Alterations of the p53 tumor suppressor gene are very common in non-melanoma skin cancer, and dysregulation of p53 pathways appear to be an early event in the tumor development. A high frequency of epidermal p53 clones has been detected in chronically sun-exposed skin. The abundance of clones containing p53 mutated keratinocytes adjacent to basal cell (BCC) and squamous cell carcinoma (SCC) suggests a role in human skin carcinogenesis. Studies using p53 mutations as a clonality marker have suggested a direct link between actinic keratosis, SCC in situ and invasive SCC. Microdissection-based studies have also shown that different parts of individual BCC tumors can share a common p53 mutation yet differ with respect to additional alterations within the p53 gene, consistent with subclonal development within tumors. Here, we present examples of using well-defined cell populations, including single cells, from complex tissue in combination with molecular tools to reveal features involved in skin carcinogenesis.  相似文献   

8.
We present a classification analysis of the mutation spectra of the p53 gene and construct maps of hotspots for the germline (Li-Fraumein syndrome), different types of tumors and their derived cell lines. While spectra from solid tumors share common hotspots with the germline spectrum, they also contain unique sets of somatic hotspots that are not observed in the germline. All these hotspots correspond to amino acid replacements in the DNA-binding interface of p53. The mutation spectra of lymphomas and cell lines derived from lymphomas and lung cancers contained few hotspots compared to solid tumors. Thus, the distribution of hotspots in the p53 gene appears to depend on the tumor type and cell growth conditions; this specificity is missed by the bulk hotspot analysis. A negative correlation was detected between the amino acid replacement propensity in tumors and evolutionary variability: the hotspots are located in the positions that are highly conserved in p53 and its paralogs, p63 and p73. In all the mutation spectra, substitutions leading to amino acid replacements strongly dominate over silent substitutions, indicating that functional sites evolving under strong purifying selection are subject to intensive positive selection in p53-dependent tumors. These results are compatible with the gain-of-function concept of the role of p53 in tumorigenesis.  相似文献   

9.
10.
Using a yeast based p53 functional assay we previously demonstrated that the UVC-induced p53 mutation spectrum appears to be indistinguishable from the one observed in Non Melanoma Skin Cancer (NMSC). However, position 742 (codon 248, CpG site) represented the major hot spot in NMSC but was not found mutated in the yeast system. In order to determine whether UVC-induced mutagenic events may be facilitated at methylated cytosine (5mC), a yeast expression vector harbouring a human wild-type p53 cDNA (pLS76) was methylated in vitro by HpaII methylase. Methylation induced 98% protection to HpaII endonuclease. Unmethylated and methylated pLS76 vectors were then UVC irradiated (lambda(max): 254 nm) and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results revealed that: (i) 5mC at HpaII sites did not cause any difference in the UVC-induced survival and/or mutagenicity; (ii) none of the 20 mutants derived from methylated pLS76 showed p53 mutations targeted at HpaII sites; (iii) the UVC-induced p53 mutation spectra derived from methylated and unmethylated pLS76 were indistinguishable not only when classes of mutations and hot spots were concerned, but also when compared through a rigorous statistical test to estimate their relatedness (P = 0.85); (iv) the presence of 5mC did not increase the formation of photo-lesions at codon 248, as determined by using a stop polymerase assay. Although based on a limited number of mutants, these results suggest that the mere presence of 5mC at position 742 does not cause a dramatic increase of its mutability after UVC irradiation. We propose that position 742 is a hot spot in NMSC either because of mutagenic events at 5mC caused by other UV components of solarlight and/or because not all the NMSC are directly correlated with UV mutagenesis but may have a "spontaneous" origin.  相似文献   

11.
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.  相似文献   

12.
Analysis of p53 mutants for transcriptional activity   总被引:21,自引:8,他引:13       下载免费PDF全文
  相似文献   

13.
Hsu TH  Chu CC  Jiang SY  Hung MW  Ni WC  Lin HE  Chang TC 《FEBS letters》2012,586(9):1287-1293
Recent studies indicated that the RIG1 (RARRES3/TIG3) plays an important role in cell proliferation, differentiation, and apoptosis. However, the regulatory mechanism of RIG1 gene expression has not been clearly elucidated. In this study, we identified a functional p53 response element (p53RE) in the RIG1 gene promoter. Transfection studies revealed that the RIG1 promoter activity was greatly enhanced by wild type but not mutated p53 protein. Sequence specific mutation of the p53RE abolished p53-mediated transactivation. Specific binding of p53 protein to the rig-p53RE was demonstrated using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. Further studies confirmed that the expression of RIG1 mRNA and protein is enhanced through increased p53 protein in HepG2 or in H24-H1299 cells. In conclusion, our results indicated that RIG1 gene is a downstream target of p53 in cancer cell lines.  相似文献   

14.
To test hypotheses on the origins of p53 mutations in human tumors, novel strategies are needed for generating mutation spectra experimentally. To this end we developed an assay employing Hupki (Human p53 knock-in) mouse embryonic fibroblasts (HUFs). Here we examine p53 mutations induced by aristolochic acid I (AAI)), the carcinogen probably responsible for Chinese herbal nephropathy. Six immortalized cultures (cell lines) from 18 HUF primary cultures exposed at passage 1 for 48 h to 50 microM AAI harbored p53 mutations in the human DNA binding domain sequence of the Hupki p53 tumor suppressor gene. The most frequently observed mutation was A to T transversion, corroborating our previous mutation study with AAI, and consistent with the presence of persistent AAI-adenine adducts found both in DNA of exposed patients and in DNA of AAI-exposed HUF cells. One of the mutations was identical in position (codon 139) and base change (A to T on the non-transcribed strand) to the single p53 mutation that has thus far been characterized in a urothelial tumor of a nephropathy patient with documented AAI exposure. Of the seven p53 mutations identified thus far in >60 HUF cell lines that immortalized spontaneously (no carcinogen treatment), none were A:T to T:A transversions. In addition, no A to T substitutions were identified among the previously reported set of 18 mutations in HUF cell lines derived from B(a)P treatment in which transversions at G:C base pairs predominated.  相似文献   

15.
16.
Tumor suppressor genes   总被引:10,自引:0,他引:10  
The retinoblastoma sensitivity protein (Rb) and the p53 gene product both appear to function as negative regulators of cell division or abnormal cellular growth in some differentiated cell types. Several types of cancers have been shown to be derived from cells that have extensively mutated both alleles of one or both of these genes, resulting in a loss-of-function mutation. In the case of the p53 gene, this mutational process appears to occur in two steps, with the first mutation at the p53 locus resulting in a trans-dominant phenotype. The mutant p53 gene product enters into an oligomeric protein complex with the wild-type p53 protein derived from the other normal allele and such a complex is inactive or less efficient in its negative regulation of growth control. This intermediate stage of carcinogenesis selects for the proliferation of cells with one mutant allele, enhancing the probability of obtaining a cancer cell with both alleles damaged. The DNA tumor viruses have evolved mechanisms to interact with the Rb and p53 negative regulators of cellular growth in order to enhance their own replication in growing cells. SV40 and adenovirus type 5 produce viral encoded proteins that also form oligomeric protein complexes with p53 and Rb, presumably inactivating their functions. These viral proteins are also the oncogene products of these viruses. Thus, the mechanisms by which cancer may arise in a host, via mutations or virus infections, have fundamental common pathways effecting the same cellular genes and gene products; Rb and p53.  相似文献   

17.
Arsenic is a naturally occurring element, but anthropogenic activities can lead to a substantial contamination of the environment. Exposure to arsenic has been associated with a significant number of adverse health effects in humans including: cardiovascular disease, diabetes, hearing loss, developmental abnormalities, anemia, neurologic and neurobehavioral disorder, leukopenia, eosinophilia, fibrosis of the liver and the kidney and various neoplasms. However, the cellular and molecular events associated with arsenic toxicity are poorly understood. Also, the precise mechanisms by which arsenic acts as a carcinogen in humans remain to be elucidated. In the present study, we used human liver carcinoma (HepG2) cells as a model to study the molecular mechanisms of arsenic-induced toxicity and carcinogenesis. We hypothesized that arsenic-induced expression of stress genes and related proteins may play a role in the cellular and molecular events leading to toxicity and tumorigenesis in liver cells. To test this hypothesis, we performed the MTT-assay for cell viability, the CAT-Tox (L) assay for gene induction, and the Western Blot analysis to assess the expression of cellular proteins including c-fos, HMTIIA, HSP70 and p53. Data obtained from the MTT assay indicated a strong dose-response relationship with respect to arsenic trioxide toxicity. Upon 48 hr of exposure, the chemical dose required to cause 50% reduction in cell viability (LD50) was computed to be 8.55 +/- 0.58 microg/ml. The CAT-Tox (L) assay showed statistically significant inductions (p<0.05) of c-fos, HMTIIA, and HSP70. Western blot analysis also demonstrated a dose-response relationship with regard to expression of specific cellular proteins. The p53 protein was expressed in arsenic trioxide-treated cells, however, the densitometric analysis did not show any significant differences (p<0.05) between treated and control cells. The lack of a significant induction of p53 may be due to the potential mitogenic effect of arsenic at low levels of arsenic exposure.  相似文献   

18.
19.
20.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号