首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Hyphal extension in the filamentous actinomycete Streptomyces coelicolor A3(2) was shown to occur by addition of newly synthesized wall material in an apical extension zone. Incubation of mycelia with tritiated N-acetyl-D-glucosamine (GlcNAc), a precursor of peptidoglycan, resulted in localized incorporation of label at the apex, as indicated by light microscopic and electron microscopic autoradiography. Within the hyphal extension zone there was a sharp decrease in incorporation with increasing distance from the apex. Hyphal tip shape, examined by low-temperature scanning electron microscopy, approximated to a semi-ellipsoid of revolution and was not hemispherical. Tip shape could be represented accurately by polynomial equations of degree less than seven. The surface stress theory was successfully applied to hyphal tip growth, with tip shape related qualitatively to the inverse of surface tension within the wall of the extension zone. Surface tension was assumed to be inversely proportional to the rate of incorporation of tritiated GlcNAc. Treatment of surface-grown hyphae with beta-lactam antibiotics resulted in localized swelling of hyphal tips. Lysozyme caused swelling of tips and of other regions of hyphae, frequently giving a beaded morphology associated with septa.  相似文献   

2.
Streptomycetes are mycelial bacteria that resemble filamentous fungi in their apical growth, branching, and morphogenetic development. One inroad into the largely unknown mechanisms underlying this prokaryotic growth polarity is provided by Streptomyces DivIVA, a protein localized at hyphal tips and involved in tip extension. Another aspect is a proposed migration of nucleoids. During sporulation, the modes of growth and cell division are reorganised. This involves dynamic assembly of FtsZ into a multitude of cytokinetic rings. Controlled by developmental regulators and intriguingly coordinated with chromosome segregation, this leads to spores with a single chromosome each. Genome sequences have shed new light on these aspects and reinforced the role of Streptomyces in bacterial cell biology.  相似文献   

3.
Streptomyces spp. grow as branching hyphae, building the cell wall in restricted zones at hyphal tips. The organization of this mode of polar growth involves three coiled‐coil proteins: DivIVA and Scy, which form apical protein complexes referred to as polarisomes; and the intermediate filament‐like protein FilP, which influences cell shape and interacts with both Scy and DivIVA. Here, we use live cell imaging of Streptomyces venezuelae to clarify the subcellular localization and dynamics of FilP and its effect on hyphal morphology. By monitoring a FilP‐mCherry fusion protein, we show that FilP accumulates in gradient‐like zones behind the hyphal tips. The apical gradient pattern of FilP localization is dependent on hyphal tip extension and immediately dissipates upon growth arrest. Fluorescence recovery after photobleaching experiments show that FilP gradients are dynamic and subject to subunit exchange during vegetative growth. Further, the localization of FilP at hyphal tips is not directly dependent on scy, even though the strongly perturbed morphology of most scy mutant hyphae is associated with mislocalization of FilP. Finally, we find that filP has an effect on the size and position of the foci of key polar growth determinant DivIVA. This effect likely contributes to the phenotype of filP mutants.  相似文献   

4.
Streptomyces cells grow by building cell wall at one pole-the hyphal tip. Although analogous to hyphal growth in fungi, this is achieved in a prokaryote, without any of the well-known eukaryotic cell polarity proteins, and it is also unique among bacterial cases of cell polarity. Further, polar growth of Streptomyces and the related mycobacteria and corynebacteria is independent of the MreB cytoskeleton and involves a number of coiled-coil proteins, including the polarity determinant DivIVA. Recent progress sheds light on targeting of DivIVA to hyphal tips and highlight protein phosphorylation in the regulation of actinobacterial growth. Furthermore, cell polarity affects not only cell envelope biogenesis in Streptomyces, but apparently also assembly of fimbriae, conjugation and migration of nucleoids.  相似文献   

5.
Characteristic features of morphogenesis in filamentous fungi are sustained polar growth at tips of hyphae and frequent initiation of novel growth sites (branches) along the extending hyphae. We have begun to study regulation of this process on the molecular level by using the model fungus Ashbya gossypii. We found that the A. gossypii Ras-like GTPase Rsr1p/Bud1p localizes to the tip region and that it is involved in apical polarization of the actin cytoskeleton, a determinant of growth direction. In the absence of RSR1/BUD1, hyphal growth was severely slowed down due to frequent phases of pausing of growth at the hyphal tip. During pausing events a hyphal tip marker, encoded by the polarisome component AgSPA2, disappeared from the tip as was shown by in vivo time-lapse fluorescence microscopy of green fluorescent protein-labeled AgSpa2p. Reoccurrence of AgSpa2p was required for the resumption of hyphal growth. In the Agrsr1/bud1Delta deletion mutant, resumption of growth occurred at the hyphal tip in a frequently uncoordinated manner to the previous axis of polarity. Additionally, hyphal filaments in the mutant developed aberrant branching sites by mislocalizing AgSpa2p thus distorting hyphal morphology. These results define AgRsr1p/Bud1p as a key regulator of hyphal growth guidance.  相似文献   

6.
Using image analysis the growth kinetics of the single hyphae of the filamentous fungus Aspergillus oryzae has been determined on-line in a flow-through cell at different glucose concentrations in the range from 26 mg L-1 to 20 g L-1. The tip extension rate of the individual hyphae can be described with saturation type kinetics with respect to the length of the hyphae. The maximum tip extension rate is constant for all hyphae measured at the same glucose concentration, whereas the saturation constant for the hyphae varies significantly between the hyphae even within the same hyphal element. When apical branching occurs, it is observed that the tip extension rate decreases temporarily. The number of branches formed on a hypha is proportional to the length of the hypha that exceeds a certain minimum length required to support the growth of a new branch. The observed kinetics has been used to simulate the outgrowth of a hyphal element from a single spore using a Monte Carlo simulation technique. The simulations shows that the observed kinetics for the individual hyphae result in an experimentally verified growth pattern with exponential growth in both total hyphal length and number of tips.  相似文献   

7.
Xu H  Chater KF  Deng Z  Tao M 《Journal of bacteriology》2008,190(14):4971-4978
Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing beta-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslA(Sc)) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslA(Sc) replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslA(Sc). cslA(Sc) was constitutively transcribed, and an enhanced green fluorescent protein-CslA(Sc) fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslA(Sc) interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslA(Sc) membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development.  相似文献   

8.
We used actin staining and videomicroscopy to analyze the development from a spore to a young mycelium in the filamentous ascomycete Ashbya gossypii. The development starts with an initial isotropic growth phase followed by the emergence of germ tubes. The initial tip growth speed of 6-10 microm/h increases during early stages of development. This increase is transiently interrupted in response to the establishment of lateral branches or septa. The hyphal tip growth speed finally reaches a maximum of up to 200 micro/h, and the tips of these mature hyphae have the ability to split into two equally fast-growing hyphae. A search for A. gossypii homologs of polarisome components of the yeast Saccharomyces cerevisiae revealed a remarkable size difference between Spa2p of both organisms, with AgSpa2p being double as long as ScSpa2p due to an extended internal domain. AgSpa2 colocalizes with sites of polarized actin. Using time-lapse videomicroscopy, we show that AgSpa2p-GFP polarization is established at sites of branch initiation and then permanently maintained at hyphal tips. Polarization at sites of septation is transient. During apical branching the existing AgSpa2p-GFP polarization is symmetrically divided. To investigate the function of AgSpa2p, we generated two AgSPA2 mutants, a partial deletion of the internal domain alone, and a complete deletion. The mutations had an impact on the maximal hyphal tip growth speed, on the hyphal diameter, and on the branching pattern. We suggest that AgSpa2p is required for the determination of the area of growth at the hyphal tip and that the extended internal domain plays an important role in this process.  相似文献   

9.
Semighini CP  Harris SD 《Genetics》2008,179(4):1919-1932
In fungal hyphae, apical dominance refers to the suppression of secondary polarity axes in the general vicinity of a growing hyphal tip. The mechanisms underlying apical dominance remain largely undefined, although calcium signaling may play a role. Here, we describe the localized accumulation of reactive oxygen species (ROS) in the apical region of Aspergillus nidulans hyphae. Our analysis of atmA (ATM) and prpA (PARP) mutants reveals a correlation between localized production of ROS and enforcement of apical dominance. We also provide evidence that NADPH oxidase (Nox) or related flavoproteins are responsible for the generation of ROS at hyphal tips and characterize the roles of the potential Nox regulators NoxR, Rac1, and Cdc42 in this process. Notably, our genetic analyses suggest that Rac1 activates Nox, whereas NoxR and Cdc42 may function together in a parallel pathway that regulates Nox localization. Moreover, the latter pathway may also include Bem1, which we propose represents a p40phox analog in fungi. Collectively, our results support a model whereby localized Nox activity generates a pool of ROS that defines a dominant polarity axis at hyphal tips.  相似文献   

10.
Shapiro A  Mullins JT 《Mycologia》2002,94(2):273-279
Cellulose has been localized in the hyphal wall of elongating and non-elongating hyphae of Achlya bisexualis using a direct enzyme-colloidal-gold method. A number of controls, including several different types of fixation, support the idea that this labeling is specific for cellulose. Both TEM and SEM were used and they gave similar results. The apical area of an elongating hypha lacks cellulose, but the same area of a non-elongating hypha contains cellulose. We have used specific culture media and light microscopic measurements to ensure that we could distinguish between elongating and non-elongating hyphae. The lack of cellulose at the apex of elongating hyphae seems to require a reevaluation of the current concepts of hyphal tip growth in Achlya and related genera. A major question now is to determine whether or not the lack of a microfibrillar component is a universal pattern among all organisms having tip growth.  相似文献   

11.
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.  相似文献   

12.
13.
We first examined the changes in distribution of F-actin during conjugate division in the apical cells of the dikaryon ofCoprinus cinereus using indirect immunofluorescence microscopy, then followed hyphal tip growth and the movement of the two nuclei in the apical cells using differential interference contrast microscopy (DIC). In apical cells with interphase nuclei, F-actin occurred solely as peripheral plaques, which were distributed along the whole length of the cell and were more concentrated at the tips, where they formed caps. In the early prophase of conjugate division, F-actin was transiently concentrated, as diffused form and plaques, at hyphal regions where the two nuclei sit, and this was accompanied by transient disappearance of the actin cap at the hyphal tip in the majority of cells. The actin cap was also present at the tips of growing clamp cells from late prophase through metaphase and disintegrated during anaphase. In telophase, actin rings formed at the future septa. DIC revealed that, in early prophase, when the F-actin array occurs around the two nuclei and the actin cap is absent at hyphal tips, hyphae kept growing and the second nucleus accelerated its forward movement to catch up with the leading nucleus, which was still moving forward.  相似文献   

14.
Unlike most other cells, hyphae of filamentous fungi permanently elongate and lack nonpolar growth phases. We identified AgBoi1/2p in the filamentous ascomycete Ashbya gossypii as a component required to prevent nonpolar growth at hyphal tips. Strains lacking AgBoi1/2p frequently show spherical enlargement at hyphal tips with concomitant depolarization of actin patches and loss of tip-located actin cables. These enlarged tips can repolarize and resume hyphal tip extension in the previous polarity axis. AgBoi1/2p permanently localizes to hyphal tips and transiently to sites of septation. Only the tip localization is important for sustained elongation of hyphae. In a yeast two-hybrid experiment, we identified the Rho-type GTPase AgRho3p as an interactor of AgBoi1/2p. AgRho3p is also required to prevent nonpolar growth at hyphal tips, and strains deleted for both AgBOI1/2 and AgRHO3 phenocopied the respective single-deletion strains, demonstrating that AgBoi1/2p and AgRho3p function in a common pathway. Monitoring the polarisome of growing hyphae using AgSpa2p fused to the green fluorescent protein as a marker, we found that polarisome disassembly precedes the onset of nonpolar growth in strains lacking AgBoi1/2p or AgRho3p. AgRho3p locked in its GTP-bound form interacts with the Rho-binding domain of the polarisome-associated formin AgBni1p, implying that AgRho3p has the capacity to directly activate formin-driven actin cable nucleation. We conclude that AgBoi1/2p and AgRho3p support polarisome-mediated actin cable formation at hyphal tips, thereby ensuring permanent polar tip growth.  相似文献   

15.
Summary Light and electron microscopic observations on vegetative hyphae ofAllomyces arbuscula revealed the specialized organization of the tip. There were some minor differences related to culture conditions, but the main ultrastructural features common to all hyphal tips disclosed a special type of organization distinct from that of other fungi. A crescent-shaped apical zone consisted of vesicles and membrane cisternae embedded in a granular matrix. Vesicles fused with the apical plasmalemma and presumably contributed to its expansion and to wall growth. The apical zone contained few ribosomes and generally no other organelles. Mitochondria were concentrated in the immediate subapical zone and scattered through the remainder of the hyphae, as were microbodies. Microtubules formed an asterlike structure with its center in the apical zone. Proximally of the apex, microtubules were axially oriented. Nuclei occurred only a certain distance from the tip. The elements of the apex may maintain the polarity of the hyphae via a gradient and hold it in a state of vegetative growth.  相似文献   

16.
Over 100 years ago, Reinhardt suggested that hyphal tip growth is comparable to ameboid movement inside a tube; the apical cytoplasm being protruded like a pseudopodium with the wall assembled on its surface. There are increasing data from hyphae which are explicable by this model. Fungi produce pseudopodia-like structures and their cytoplasm contains all of the major components implicated in pseudopodium production in animal cells. Most of these components are concentrated in hyphal tips and tip growth involves actin, a major component of pseudopodia. Together these data indicate that the essence of the ameboid model is still tenable. However, detailed mechanisms of tip growth remain too poorly known to provide definitive proof of the model and the behavior of the trailing cytoplasm indicates differences which are probably a response to the walled lifestyle.  相似文献   

17.
The development from young, slowly growing hyphae to fast growing hyphae in filamentous fungi is referred to as hyphal maturation. We have identified the Paxillin-like protein AgPxl1 in Ashbyagossypii as a developmental protein that is specifically required for hyphal maturation. The early development of A.gossypii strains lacking AgPxl1 is indistinguishable from wild-type. However, at later developmental stages the maximal hyphal extension rate is less than half compared to wild-type and apical branching is affected. Apical branching is characterised as the symmetric division of fast growing hyphal tips resulting in two sister hyphae. In Agpxl1Delta strains two thirds of the apical branching events lead to asymmetric sister hyphae where growth of one branch is either completely aborted or slowed down while extension of the other branch is not affected. This suggests that AgPxl1 plays a role in the organisation of growth and efficient division of growth upon apical branching in mature mycelia. The conserved C-terminal LIM domains are necessary for AgPxl1 function and also contribute to tip localisation. AgCLA4, a PAK-like kinase, is epistatic to AgPXL1 and robust localisation of AgPxl1 depends on AgCla4. This suggests that AgCla4 acts upstream of AgPxl1.  相似文献   

18.
The mechanisms underlying the growth of fungal hyphae are rooted in the physical property of cell pressure. Internal hydrostatic pressure (turgor) is one of the major forces driving the localized expansion at the hyphal tip which causes the characteristic filamentous shape of the hypha. Calcium gradients regulate tip growth, and secretory vesicles that contribute to this process are actively transported to the growing tip by molecular motors that move along cytoskeletal structures. Turgor is controlled by an osmotic mitogen-activated protein kinase cascade that causes de novo synthesis of osmolytes and uptake of ions from the external medium. However, as discussed in this Review, turgor and pressure have additional roles in hyphal growth, such as causing the mass flow of cytoplasm from the basal mycelial network towards the expanding hyphal tips at the colony edge.  相似文献   

19.
Cloning of the Cdc42 gene from Schizophyllum commune enabled investigation of the role of ScCdc42 in the regulation of vegetative growth and sexual reproduction in this fungus, which has a well-characterized hyphal cell structure, cytoskeleton, and mating system. Ectopic expression of the constitutively active Sccdc42(G12V) or Sccdc42(Q61L) alleles from native or inducible ScCel1 promoters in haploid hyphae had dramatic effects on hyphal morphology, cytoskeletal structure, and Cdc42 localization. For transformants with constitutively active Sccdc42, polar tip growth of apical cells in the leading hyphae was normal but polar tip growth in side branches was altered, implying different regulation of polarity establishment in the two groups of apical cells. Branch emergence at exceptional sites and isotropic growth of cells near the septum indicated that ScCdc42 regulates branch site selection and subsequent hyphal development. Poor dikaryotization along with irregular clamp connections in mates expressing Sccdc42(G12V) or Sccdc42(Q61L) suggested that Cdc42 also contributes to efficient mating in S. commune.  相似文献   

20.
Anker JF  Gladfelter AS 《Eukaryotic cell》2011,10(12):1679-1693
In budding yeast, new sites of polarity are chosen with each cell cycle and polarization is transient. In filamentous fungi, sites of polarity persist for extended periods of growth and new polarity sites can be established while existing sites are maintained. How the polarity establishment machinery functions in these distinct growth forms found in fungi is still not well understood. We have examined the function of Axl2, a transmembrane bud site selection protein discovered in Saccharomyces cerevisiae, in the filamentous fungus Ashbya gossypii. A. gossypii does not divide by budding and instead exhibits persistent highly polarized growth, and multiple axes of polarity coexist in one cell. A. gossypii axl2Δ (Agaxl2Δ) cells have wavy hyphae, bulbous tips, and a high frequency of branch initiations that fail to elongate, indicative of a polarity maintenance defect. Mutant colonies also have significantly lower radial growth and hyphal tip elongation speeds than wild-type colonies, and Agaxl2Δ hyphae have depolarized actin patches. Consistent with a function in polarity, AgAxl2 localizes to hyphal tips, branches, and septin rings. Unlike S. cerevisiae Axl2, AgAxl2 contains a Mid2 homology domain and may function to sense or respond to environmental stress. In support of this idea, hyphae lacking AgAxl2 also display hypersensitivity to heat, osmotic, and cell wall stresses. Axl2 serves to integrate polarity establishment, polarity maintenance, and environmental stress response for optimal polarized growth in A. gossypii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号