首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intermolecular homologous recombination in plants.   总被引:16,自引:6,他引:10       下载免费PDF全文
To study DNA topological requirements for homologous recombination in plants, we have constructed pairs of plasmids that contain nonoverlapping deletions in the neomycin phosphotransferase gene [APH(3')II], which, when intact, confers kanamycin resistance to plant cells. Protoplasts isolated from Nicotiana tabacum were cotransformed with complementary pairs of plasmids containing these truncated gene constructs. Homologous recombination or gene conversion within the homologous sequences (6 to 405 base pairs) of the protein-coding region of the truncated genes led to the restoration of the functional APH(3')II gene, rendering these cells resistant to kanamycin. Circular plasmid DNAs recombined very inefficiently, independent of the length of the homologous region. A double-strand break in one molecule only slightly increased the recombination frequency. The most favorable substrates for recombination were linear molecules. In this case, the recombination frequency was positively correlated with the length of the homologous regions. The recombination frequency of plasmids linearized at sites proximal to the deletion-homology junction was significantly higher than when linearization was distal to the homologous region. Vector homology within cotransformed plasmid sequences also increased the recombination frequency.  相似文献   

2.
Gene replacement by homologous recombination in plants   总被引:15,自引:0,他引:15  
After the elucidation of the sequence of the yeast genome a major effort was started to elucidate the biological function of all open reading frames of this organisms by targeted gene replacement via homologous recombination. The establishment of the complete sequence of the genome of Arabidopsis thaliana would principally allow a similar approach. However, over the past dozen years all attempts to establish an efficient gene targeting technique in flowering plants were in the end not successful. In contrast, in Physcomitrella patens an efficient gene targeting procedure has been set up, making the moss a valuable model system for plant molecular biologists. But also for flowering plants recently several new approaches – some of them based on the availability of the genomic sequence of Arabidopsis – were initiated that might finally result on the set up of a general applicable technique. Beside the production of hyper-recombinogenic plants either via expression or suppression of specific gene functions or via undirected mutagenesis, the application of chimeric oligonucleotides might result in major progress.  相似文献   

3.
RecQ helicase enhances homologous recombination in plants   总被引:4,自引:0,他引:4  
Li HQ  Terada R  Li MR  Iida S 《FEBS letters》2004,574(1-3):151-155
RecQ helicase is a key component in the RecF pathway of Escherichia coli for initiation of homologous recombination. Here, we demonstrate that transient expression of RecQ gene in rice embryogenic cell increases the homologous recombination efficiency as much as 4-fold. Further experiments reveal that this effect is influenced by the RecQ dosage. Stable expression of RecQ in rice dramatically increases the homologous recombination events 20- to 40-fold in leaf tissue from different transgenic lines. This is the first evidence indicating that overexpression of RecQ gene can stimulate homologous recombination in plants.  相似文献   

4.
Intrachromosomal homologous recombination in whole plants.   总被引:22,自引:2,他引:20       下载免费PDF全文
P Swoboda  S Gal  B Hohn    H Puchta 《The EMBO journal》1994,13(2):484-489
A system to assay intrachromosomal homologous recombination during the complete life-cycle of a whole higher eukaryote was set up. Arabidopsis thaliana plants were transformed with a recombination substrate carrying a non-selectable and quantitatively detectable marker gene. The recombination substrates contain two overlapping, non-functional deletion mutants of a chimeric beta-glucuronidase (uidA) gene. Upon recombination, as proven by Southern blot analysis, a functional gene is restored and its product can be detected by histochemical staining. Therefore, cells in which recombination events occurred, and their progeny, can be precisely localized in the whole plant. Recombination was observed in all plant organs examined, from the seed stage until the flowering stage of somatic plant development. Meristematic recombination events revealed cell lineage patterns. Overall recombination frequencies typically were in the range 10(-6)-10(-7) events/genome. Recombination frequencies were found to differ in different organs of particular transgenic lines.  相似文献   

5.
Homologous recombination creates covalent linkages between DNA in regions of highly similar or identical sequence. Recent results from several laboratories, many of them based on forward and reverse genetics in Arabidopsis, give insights into the mechanisms of the enzymatic machinery and the involvement of chromatin in somatic and meiotic DNA recombination. Also, signaling pathways and interconnections between repair pathways are being discovered. In addition, recent work shows that biotic and abiotic influences from the environment can dramatically affect plant genomes. The resulting changes in the DNA sequence, exerted at the level of somatic or meiotic tissue, might contribute to evolution.  相似文献   

6.
Reactive oxygen species stimulate homologous recombination in plants   总被引:3,自引:0,他引:3  
Coping with the continuous production of free radicals is a daily routine of the cell. Despite their toxicity, the reactive oxygen species (ROS) are involved in dual physiological action – signal transduction and immune response. We analysed the influence of oxidative stress‐generating compounds, rose Bengal (RB), paraquat (PQ) and amino‐triazole (ATZ) on the genome stability of Arabidopsis using transgenic recombination‐monitoring plants. Homologous recombination frequencies in plants were increased upon the treatment with RB and PQ but not ATZ. Application of the N‐acetyl‐L ‐cysteine (NAC), radicals scavenging compound, decreased the DNA damage caused by RB. Interestingly, the incubation of plants with very low concentration of RB (less than 0.2 µM ) led to the subsequent increase in plant tolerance to methyl methane sulfonate (MMS): stronger plants with a lower increase of homologous recombination frequency. In contrast, the incubation of plants with 0.5 µM of RB resulted in the potentiation of the MMS effect: the weaker plants with higher frequency of recombination. The data of the present study suggest the existence of a dual concentration‐dependent role of ROS in plants.  相似文献   

7.
Induction of intrachromosomal homologous recombination in whole plants   总被引:7,自引:3,他引:4  
The influence of different factors on frequencies of intrachromosomal homologous recombination in whole Arabidopsis thaliana and tobacco plants was analyzed using a disrupted β-glucuronidase marker gene. Recombination frequencies were enhanced severalfold by DNA damaging agents like UV-light or MMS (methyl methanesulfonate). Applying 3-methoxybenzamide (3-MB), an inhibitor of poly(ADP)ribose polymerase (PARP), an enzyme that is postulated to be involved in DNA repair, enhanced homologous recombination frequencies strongly. These findings indicate that homologous recombination is involved in DNA repair and can (at least partially) compensate for other DNA repair pathways. Indications that recombination in plants can be induced by environmental stress factors that are not likely to be involved in DNA metabolism were also found; Arabidopsis plants growing in a medium containing 0.1 M NaCl exhibited elevated recombination frequencies. The possible general effects of ‘environmental’ challenges on genome flexibility are discussed.  相似文献   

8.
Homologous recombination offers great promise for plant genome engineering. This promise has not been realized, however, because when DNA enters plant cells homologous recombination occurs infrequently and random integration predominates. Using a tobacco test system, we demonstrate that chromosome breaks created by zinc-finger nucleases greatly enhance the frequency of localized recombination. Homologous recombination was measured by restoring function to a defective GUS:NPTII reporter gene integrated at various chromosomal sites in 10 different transgenic tobacco lines. The reporter gene carried a recognition site for a zinc-finger nuclease, and protoplasts from each tobacco line were electroporated with both DNA encoding the nuclease and donor DNA to effect repair of the reporter. Homologous recombination occurred in more than 10% of the transformed protoplasts regardless of the reporter's chromosomal position. Approximately 20% of the GUS:NPTII reporter genes were repaired solely by homologous recombination, whereas the remainder had associated DNA insertions or deletions consistent with repair by both homologous recombination and non-homologous end joining. The DNA-binding domain encoded by zinc-finger nucleases can be engineered to recognize a variety of chromosomal target sequences. This flexibility, coupled with the enhancement in homologous recombination conferred by double-strand breaks, suggests that plant genome engineering through homologous recombination can now be reliably accomplished using zinc-finger nucleases.  相似文献   

9.
10.
This paper describes a novel method for creating exact DNA fusions between any two points in a plasmid carried in Bacillus subtilis. It exploits the homologous in vivo recombination between directly repeated sequences that can be established by insertion of a synthetic oligodeoxyribonucleotide. The method was used to enhance the productivity in B. subtilis of a cloned alpha-amylase (Amy)-encoding gene originating from Bacillus stearothermophilus. Thus, an exact fusion between nucleotide sequences encoding the expression signals, including the signal peptide, of a Bacillus licheniformis Amy-encoding gene and the mature Amy of B. stearothermophilus, was created. The resulting hybrid translational product was processed correctly in B. subtilis during secretion, giving rise to an Amy identical to the mature Amy secreted by B. stearothermophilus.  相似文献   

11.
The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.  相似文献   

12.
Dubest S  Gallego ME  White CI 《EMBO reports》2002,3(11):1049-1054
Using a specific recombination assay, we show in the plant Arabidopsis thaliana that AtRad1 protein plays a role in the removal of non-homologous tails in homologous recombination. Recombination in the presence of non-homologous overhangs is reduced 11-fold in the atrad1 mutant compared with the wild-type plants. AtRad1p is the A. thaliana homologue of the human Xpf and Saccharomyces cerevisiae Rad1 proteins. Rad1p is a subunit of the Rad1p/Rad10p structure-specific endonuclease that acts in nucleotide excision repair and inter-strand crosslink repair. This endonuclease also plays a role in mitotic recombination to remove non-homologous, 3′-ended overhangs from recombination intermediates. The Arabidopsis atrad1 mutant (uvh1), unlike rad1 mutants known from other eukaryotes, is hypersensitive to ionizing radiation. This last observation may indicate a more important role for the Rad1/Rad10 endonuclease in recombination in plants. This is the first direct demonstration of the involvement of AtRad1p in homologous recombination in plants.  相似文献   

13.
Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling.  相似文献   

14.
We have developed an efficient method for the simultaneous introduction of up to three mutations in a plasmid DNA via homologous recombination. The strategy is compatible with a variety of mutations, including degenerate codons in plasmids of different sizes. In contrast to other methodologies, this approach employs the same set of reagents for both single- and multi-site mutagenesis assays, minimizes the required protocol steps, and exhibits remarkably high mutagenesis efficiencies.  相似文献   

15.
We describe the isolation of a novel gene, TSGA10, by differential mRNA display which is expressed solely in adult human testis. It seems likely that the gene is expressed during spermatogenesis possibly in spermatocytes. The gene is composed of 19 exons extending over more than 80 kb. The complete cDNA contains an open reading frame of 2094 nucleotides, which appears to encode a novel protein. It has been mapped by polymerase chain reaction on a panel of somatic cell hybrids and by fluorescence in situ hybridization to chromosome 2q11.2.  相似文献   

16.
Kirik A  Pecinka A  Wendeler E  Reiss B 《The Plant cell》2006,18(10):2431-2442
DNA replication in cycling eukaryotic cells necessitates the reestablishment of chromatin after nucleosome redistribution from the parental to the two daughter DNA strands. Chromatin assembly factor 1 (CAF-1), a heterotrimeric complex consisting of three subunits (p150/p60/p48), is one of the replication-coupled assembly factors involved in the reconstitution of S-phase chromatin. CAF-1 is required in vitro for nucleosome assembly onto newly replicated chromatin in human cells and Arabidopsis thaliana, and defects in yeast (Saccharomyces cerevisiae) affect DNA damage repair processes, predominantly those involved in genome stability. However, in vivo chromatin defects of caf-1 mutants in higher eukaryotes are poorly characterized. Here, we show that fasciata1-4 (fas1-4), a new allele of the Arabidopsis fas1 mutant defective in the p150 subunit of CAF-1, has a severe developmental phenotype, reduced heterochromatin content, and a more open conformation of euchromatin. Most importantly, homologous recombination (HR), a process involved in maintaining genome stability, is increased dramatically in fas1-4, as indicated by a 96-fold stimulation of intrachromosomal HR. Together with the open conformation of chromatin and the nearly normal expression levels of HR genes in the mutant, this result suggests that chromatin is a major factor restricting HR in plants.  相似文献   

17.
Pathway choice is a critical event in the repair of DNA double-strand breaks. In a recent paper published in Nature, Orthwein et al. define a mechanism by which homologous recombination is controlled in G1 cells to favor non-homologous end joining.Homologous recombination (HR) is an essential process that produces genetic variation during meiosis and protects the genome during mitotic cell division1. Inherited mutations in various HR factors, including the BRCA1, BRCA2 and PALB2 tumor suppressors, predispose to the development of cancer. Although HR is generally beneficial for maintaining genome integrity, HR events between homologous chromosomes can also be deleterious and lead to loss of genetic information. HR is therefore suppressed during G1 phase and in non-dividing cells, yet, the exact mechanism behind this phenomenon has remained elusive. New work from the laboratory of Daniel Durocher describes a mechanism that is both necessary and sufficient for the suppression of HR in G1 cells2.DNA double-strand breaks (DSBs) are one of the most dangerous types of DNA lesion and need to be eliminated to prevent the accumulation of mutations. DSB repair is carried out by two main pathways, HR and non-homologous end joining (NHEJ)1. Whereas NHEJ is an error-prone process that simply fuses the two broken ends together, HR is essentially error-free as it uses the genetically identical sister chromatid as a template for repair. Due to the cell cycle-dependent availability of sister chromatids, HR is restricted to the S and G2 phases of the cell cycle.In the HR repair pathway, the DSB ends are first resected to produce extended single-stranded DNA (ssDNA) tails by the coordinated actions of a series of helicase and nuclease activities (e.g., MRN, CtIP and EXO1)1. CtIP plays a particularly important role in regulating resection, which is mediated through its interaction with BRCA13. In the following cascade of events, BRCA1 interacts directly with the BRCA2-PALB2 complex, which in turn is recruited to the ssDNA where it acts as a chaperone that stimulates the formation of RAD51 nucleoprotein filaments that drive homology-directed HR repair to restore the integrity of the DNA4,5.Whereas most HR events take place between the newly replicated sister chromatids, recombination between homologous chromosomes can result in loss of heterozygosity, a potentially mutagenic event that can lead to the inactivation of tumor suppressors or activation of oncogenes. HR must therefore be tightly regulated and effectively suppressed in G1 phase, at the time when only homologous chromosomes are available for repair. At such times, NHEJ is the favored mechanism for DSB repair.A number of mechanisms regulate HR to a specific phase of the cell cycle. For example, CtIP is activated for interaction with BRCA1 by CDK-dependent phosphorylation, which occurs in the S and G2 phases of the cell cycle. Conversely, HR is suppressed in G1 phase by the pro-NHEJ factors 53BP16, RIF17 and REV78, which impair the recruitment of BRCA1 and thereby inhibit DNA end resection. Consequently, disruption of 53BP1 leads to the recruitment of BRCA1 to DSBs in G1 phase. In the recent Nature paper from Durocher''s laboratory, Orthwein et al.2 discovered that although BRCA1 is localized to DSBs during G1 phase in 53BP1-deficient cells, it fails to recruit the BRCA2-PALB2 complex, which is consistent with the lack of HR activity in these cells.Through immunoprecipitation experiments Orthwein et al. showed that while BRCA2 and PALB2 interact throughout the cell cycle, BRCA1 and PALB2 only interact efficiently in S phase, suggesting that there might be a mechanism that restricts their interaction to S and G2 phases, while also blocking it in G1 phase. The region of PALB2 that is responsible for its cell cycle-regulated interaction with BRCA1 was localized to its N-terminal domain, which corresponds to a known interaction site for KEAP1, a substrate adaptor for the CUL3-RING (CRL3) ubiquitin ligase. Remarkably, they found that deletion of the KEAP1 gene using CRISPR-Cas9 technology restored the BRCA1-PALB2 interaction in G1 cells, and led to the recruitment of BRCA2-PALB2 to sites of DNA damage in 53BP1-deficient G1 cells.Since KEAP1 is involved in protein ubiquitylation, Orthwein et al. hypothesized that ubiquitylation of PALB2 in the BRCA1-interacting region might block their interaction. Indeed, mutation of lysines in the interacting region of PALB2 restored its interaction with BRCA1 in G1 cells. Furthermore, pull-down experiments showed that ubiquitylation of PALB2 on Lysine-20 by KEAP1-CRL3 prevented its interaction with BRCA1. However, as neither the activity of the KEAP1-CRL3 ubiquitin ligase nor its interaction with BRCA1 is cell cycle regulated, Orthwein et al. reasoned that a deubiquitylation step could be the rate-limiting regulator of the BRCA1-PALB2 interaction. They highlighted the deubiquitylating enzyme USP11 as a potential candidate for this activity due to its interaction with BRCA1, BRCA2 and PALB2, and indeed found that USP11 disruption impaired the interaction between BRCA1 and PALB2. Moreover, they found that USP11 was unstable and interacted poorly with PALB2 in G1 cells, and that USP11 was rapidly lost by proteasomal degradation in G1 phase after DNA damage. By contrast, expression of USP11 in S-phase was high and insensitive to DNA damage. Taken together, these data led the authors to propose that the opposing activities of USP11 and KEAP1-CRL3 regulate cell cycle-dependent interactions between BRCA1 and PALB2 (Figure 1).Open in a separate windowFigure 1Schematic representation indicating how the opposing activities of USP11 and KEAP1-CRL3 regulate cell cycle-dependent interactions between BRCA1 and PALB2, and thereby mediate pathway choice in DSB repair.To extend these remarkable observations, Orthwein et al. disrupted this regulatory network to allow HR in G1 cells. They expected that depletion of KEAP1 in 53BP1-deficient cells might be sufficient for RAD51 foci formation following ionizing radiation (IR), but this was not the case because end resection remained a limiting factor. To counteract this, the authors expressed a constitutively active form of CtIP (T847E)9, which augmented resection and led to the efficient formation of IR-induced RAD51 foci in 53BP1- and KEAP1-deficient G1 cells. To address whether these RAD51 foci in G1 cells corresponded to productive HR events, they used a fluorescent-based gene-targeting assay. Whereas CtIP (T847E)expressed in 53BP1-deficient cells alone was insufficient to induce productive HR, depletion of KEAP1 or expression of a non-ubiquitylable version of PALB2 led to a robust increase in gene-targeting events. Collectively, this study therefore demonstrates that activation of DNA end resection, combined with the recruitment of BRCA2 to DSBs, are both necessary and sufficient to produce HR in G1 cells.Gene targeting has great potential for therapeutic purposes, but the fact that most cells in the body are non-dividing has so far limited its use10. We suspect that the new knowledge highlighted in this work will further improve gene-targeting therapies to help fight human diseases.  相似文献   

18.
19.
Homologous recombination within plastids directs plastid genome transformation for foreign gene expression and study of plastid gene function. Though transgenes are generally efficiently targeted to their desired insertion site, unintended homologous recombination events have been observed during plastid transformation. To understand the nature and abundance of these recombination events, we analyzed transplastomic tobacco lines derived from three different plastid transformation vectors utilizing two different loci for foreign gene insertion. Two unintended recombinant plastid DNA species were formed from each regulatory plastid DNA element included in the transformation vector. Some of these recombinant DNA species accumulated to as much as 10–60% of the amount of the desired integrated transgenic sequence in T0 plants. Some of the recombinant DNA species undergo further, “secondary” recombination events, resulting in an even greater number of recombinant plastid DNA species. The abundance of novel recombinant DNA species was higher in T0 plants than in T1 progeny, indicating that the ancillary recombination events described here may have the greatest impact during selection and regeneration of transformants. A line of transplastomic tobacco was identified containing an antibiotic resistance gene unlinked from the intended transgene insertion as a result of an unintended recombination event, indicating that the homologous recombination events described here may hinder efficient recovery of plastid transformants containing the desired transgene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary The ideal approach to gene therapy of hereditary diseases or gene correction therapy is considered. The advantages, disadvantages and limits of gene targeting by homologous recombination are discussed with regard to its possible application in gene correction therapy and in comparison with retroviral-mediated gene complementation therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号