首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end-directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs.  相似文献   

2.
  总被引:1,自引:1,他引:1  
A recent report based on analysis of the Arabidopsis genome suggested that angiosperms do not contain the dynein microtubule motor. However, examination of the whole genome shotgun sequence for rice ( Oryza sativa ) has revealed that four dynein heavy chains are present in this monocot, indicating that the apparent lack of these sequences in Arabidopsis is not a general feature of angiosperm genomic organization. These observations also suggest that, in contrast to an earlier proposal, flowering plants may indeed use standard dynein-driven mechanisms to perform cellular transport activities that, in other organisms, employ the dynein motor  相似文献   

3.
    
Dynactin is a highly conserved, multiprotein complex that works in conjunction with microtubule-based motors to power a variety of intracellular motile events. Dynamitin (p50) is a core element of dynactin structure. In the present study, we use targeted mutagenesis to evaluate how dynamitin's different structural domains contribute to its ability to self-associate, interact with dynactin and assemble into a complex with its close binding partner, p24. We show that these interactions involve three distinct structural elements: (i) a previously unidentified dimerization motif in the N-terminal 100 amino acids, (ii) an α-helical motif spanning aa 106–162 and (iii) the C-terminal half of the molecule (aa 213–406), which is predicted to fold into an antiparallel α-helix bundle. The N-terminal half of dynamitin by itself is sufficient to disrupt dynactin, although very high concentrations are required. The ability of mutations in dynamitin's interaction domains to disrupt dynactin in vitro was found to correlate with their inhibitory effects when expressed in cells. We determined that the dynactin subunit, p24, governs dynamitin oligomerization by binding dynamitin along its length. This suppresses aberrant multimerization and drives formation of a protein complex that is identical to the native dynactin shoulder.  相似文献   

4.
Many cargoes move bidirectionally, frequently reversing course between plus- and minus-end microtubule travel. For such cargoes, the extent and importance of interactions between the opposite-polarity motors is unknown. In this paper we test whether opposite-polarity motors on lipid droplets in Drosophila embryos are coordinated and avoid interfering with each other's activity, or whether they engage in a tug of war. To this end we impaired the minus-end transport machinery using dynein and dynactin mutations, and then investigated whether plus-end motion was improved or disrupted. We observe a surprisingly severe impairment of plus-end motion due to these alterations of minus-end motor activity. These observations are consistent with a coordination hypothesis, but cannot be easily explained with a tug of war model. Our measurements indicate that dynactin plays a crucial role in the coordination of plus- and minus-end-directed motors. Specifically, we propose that dynactin enables dynein to participate efficiently in bidirectional transport, increasing its ability to stay "on" during minus-end motion and keeping it "off" during plus-end motion.  相似文献   

5.
Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788-1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22-24-kD domain.  相似文献   

6.
Glutamate excitotoxicity causes neuronal dysfunction and degeneration. It is implicated in chronic disorders, including Alzheimer's disease, and in acute CNS insults such as ischemia. These disorders share prominent morphological features, including axon degeneration and cell body death. However, the molecular mechanism underlying excitotoxicity-induced neurodegeneration remains poorly understood. A key molecular feature of neurodegeneration is deficits in microtubule-based cargo transport that plays a pivotal role in maintaining the balance of survival and stress signaling in the axon. We developed an excitotoxicity-induced neurodegeneration system in primary neuronal cultures. We find that excitotoxicity generates a C-terminal truncated form of p150Glued, a major component of the dynactin complex, which exacerbates axon degeneration. This p150Glued truncated form was identified in brain tissues of patients with Alzheimer's disease. Overexpression of wild-type (WT) dynein intermediate chain (DIC), a dynein component that interacts with p150Glued and links dynein and dynactin complexes, DIC (S84D) mutant, and WT p150Glued suppressed axon degeneration. These modulating effects of p150Glued and DIC on excitotoxicity-induced axon degeneration are also observed in apoptosis and cell body death. Thus, our findings identify retrograde transport proteins, p150Glued and DIC, as novel modulators of neurodegeneration induced by glutamate excitotoxicity.  相似文献   

7.
8.
The nudF gene of the filamentous fungus Aspergillus nidulans acts in the cytoplasmic dynein/dynactin pathway and is required for distribution of nuclei. NUDF protein, the product of the nudF gene, displays 42% sequence identity with the human protein LIS1 required for neuronal migration. Haploinsufficiency of the LIS1 gene causes a malformation of the human brain known as lissencephaly. We screened for multicopy suppressors of a mutation in the nudF gene. The product of the nudE gene isolated in the screen, NUDE, is a homologue of the nuclear distribution protein RO11 of Neurospora crassa. The highly conserved NH(2)-terminal coiled-coil domain of the NUDE protein suffices for protein function when overexpressed. A similar coiled-coil domain is present in several putative human proteins and in the mitotic phosphoprotein 43 (MP43) of X. laevis. NUDF protein interacts with the Aspergillus NUDE coiled-coil in a yeast two-hybrid system, while human LIS1 interacts with the human homologue of the NUDE/RO11 coiled-coil and also the Xenopus MP43 coiled-coil. In addition, NUDF coprecipitates with an epitope-tagged NUDE. The fact that NUDF and LIS1 interact with the same protein domain strengthens the notion that these two proteins are functionally related.  相似文献   

9.
  总被引:1,自引:0,他引:1  
Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150Glued, dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150Glued was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast.  相似文献   

10.
    
《Developmental neurobiology》2017,77(12):1351-1370
Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter‐linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351–1370, 2017  相似文献   

11.
The transport of vesicles in neurons is a highly regulated process, with vesicles moving either anterogradely or retrogradely depending on the nature of the molecular motors, kinesins and dynein, respectively, which propel vesicles along microtubules (MTs). However, the mechanisms that determine the directionality of transport remain unclear. Huntingtin, the protein mutated in Huntington's disease, is a positive regulatory factor for vesicular transport. Huntingtin is phosphorylated at serine 421 by the kinase Akt but the role of this modification is unknown. Here, we demonstrate that phosphorylation of wild-type huntingtin at S421 is crucial to control the direction of vesicles in neurons. When phosphorylated, huntingtin recruits kinesin-1 to the dynactin complex on vesicles and MTs. Using brain-derived neurotrophic factor as a marker of vesicular transport, we demonstrate that huntingtin phosphorylation promotes anterograde transport. Conversely, when huntingtin is not phosphorylated, kinesin-1 detaches and vesicles are more likely to undergo retrograde transport. This also applies to other vesicles suggesting an essential role for huntingtin in the control of vesicular directionality in neurons.  相似文献   

12.
动力蛋白激活蛋白(dynactin) 是一个与胞浆内动力蛋白的功能相关的多亚基复合物.动力蛋白(dynein)为向微管负端运输的马达蛋白,其多种功能包括细胞核迁移、有丝分裂纺锤体定位以及细胞间期和有丝分裂的细胞骨架再组装.Dynamitin,是一个50 kD的动力蛋白激活蛋白亚单位, 对于稳定动力蛋白激活蛋白复合物是非常重要的.为研究这种稳定性机制,分析了dynamitin的序列,并揭示dynamitin的一些DNA序列与ATP酶的Walker A 和 Walker B 序列具有同源性.纯化的谷胱甘肽巯基转移酶标签蛋白dynamitin和无此标签的蛋白dynamitin都特异性显示了ATP酶活性.DNA序列Walker A的失活突变可废除dynamitin蛋白的ATP酶活性,而Walker B 序列无此作用.因此,突变实验进一步证实dynamitin蛋白的ATP酶活性.ATP酶活性的动力学研究结果表明Km为 125.78μmol/L和 Kcat 为7.4 min-1  相似文献   

13.
A review of the role of the microtubule motor dynein and its cofactor dynactin in the formation of a radial system of microtubules in the interphase cells and of mitotic spindle. Deciphering of the structure, functions, and regulation of activity of dynein and dynactin promoted the understanding of mechanisms of cell and tissue morphogenesis, since it turned out that these cells help the cell in finding its center and organize microtubule-determined anisotropy of intracellular space. The structure of dynein and dynactin molecules has been considered, as well as possible pathways of regulation of the dynein activity and the role of dynein in transport of cell components along the microtubules. Attention has also been paid to the functions of dynein and dynactin not related directly to transport: their involvement in the formation of an interphase radial system of microtubules. This system can be formed by self-organization of microtubules and dynein-containing organelles or via organization of microtubules by the centrosome, whose functioning requires dynein. In addition, dynein and dynactin are responsible for cell polarization during its movement, as well as for the position of nucleus, centrosomes, and mitotic spindle in the cell.  相似文献   

14.
Dynactin is required for bidirectional organelle transport   总被引:19,自引:0,他引:19       下载免费PDF全文
Kinesin II is a heterotrimeric plus end-directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II-mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II-associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530-793 of XKAP and aa 600-811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.  相似文献   

15.
Mutations in the human LIS1 gene cause type I lissencephaly, a severe brain developmental disease involving gross disorganization of cortical neurons. In lower eukaryotes, LIS1 participates in cytoplasmic dynein-mediated nuclear migration. We previously reported that mammalian LIS1 functions in cell division and coimmunoprecipitates with cytoplasmic dynein and dynactin. We also localized LIS1 to the cell cortex and kinetochores of mitotic cells, known sites of dynein action. We now find that the COOH-terminal WD repeat region of LIS1 is sufficient for kinetochore targeting. Overexpression of this domain or full-length LIS1 displaces CLIP-170 from this site without affecting dynein and other kinetochore markers. The NH2-terminal self-association domain of LIS1 displaces endogenous LIS1 from the kinetochore, with no effect on CLIP-170, dynein, and dynactin. Displacement of the latter proteins by dynamitin overexpression, however, removes LIS1, suggesting that LIS1 binds to the kinetochore through the motor protein complexes and may interact with them directly. We find that of 12 distinct dynein and dynactin subunits, the dynein heavy and intermediate chains, as well as dynamitin, interact with the WD repeat region of LIS1 in coexpression/coimmunoprecipitation and two-hybrid assays. Within the heavy chain, interactions are with the first AAA repeat, a site strongly implicated in motor function, and the NH2-terminal cargo-binding region. Together, our data suggest a novel role for LIS1 in mediating CLIP-170-dynein interactions and in coordinating dynein cargo-binding and motor activities.  相似文献   

16.
Cytoplasmic dynein is an approximately 1.4 MDa multi‐protein complex that transports many cellular cargoes towards the minus ends of microtubules. Several in vitro studies of mammalian dynein have suggested that individual motors are not robustly processive, raising questions about how dynein‐associated cargoes can move over long distances in cells. Here, we report the production of a fully recombinant human dynein complex from a single baculovirus in insect cells. Individual complexes very rarely show directional movement in vitro. However, addition of dynactin together with the N‐terminal region of the cargo adaptor BICD2 (BICD2N) gives rise to unidirectional dynein movement over remarkably long distances. Single‐molecule fluorescence microscopy provides evidence that BICD2N and dynactin stimulate processivity by regulating individual dynein complexes, rather than by promoting oligomerisation of the motor complex. Negative stain electron microscopy reveals the dynein–dynactin–BICD2N complex to be well ordered, with dynactin positioned approximately along the length of the dynein tail. Collectively, our results provide insight into a novel mechanism for coordinating cargo binding with long‐distance motor movement.  相似文献   

17.
Nuclear mitotic apparatus protein (NuMA) is an essential vertebrate component in organizing microtubule ends at spindle poles. The NuMA-dynactin/dynein motor multiprotein complex not only explains the transport of NuMA along spindle fibers but also is linked to the process of microtubule focusing. The interaction sites of NuMA to dynein/dynactin have not been mapped. In the yet functionally uncharacterized N terminus of NuMA, we predict a calponin-homology (CH) domain, a motif with binding activity for actin-like molecules. We substantiate the primary sequence analysis-based prediction with secondary structure and fold recognition analysis, and we propose the N-terminal CH domain of NuMA as a likely interaction site for actin-related protein 1 (Arp1) protein of the dynactin/dynein complex.  相似文献   

18.
Down syndrome (DS, trisomy 21) is the most frequent genetic cause of mental retardation. Although known for more than a hundred years the underlying pathomechanisms for the phenotype and impaired brain functions remain elusive. Performing protein hunting in fetal DS brain, we detected a series of cytoskeleton proteins with aberrant expression in fetal DS cortex. Fetal brain cortex samples of controls and DS of the early second trimenon of gestation were used for the experiments. We applied two-dimensional electrophoresis with in-gel digestion of protein spots, subsequent mass spectroscopical (MALDI) identification, and quantification of spots using specific software. Centractin alpha, F-actin capping protein alpha-1, alpha-2 and beta subunits were significantly reduced in fetal DS cortex, whereas dynein intermediate clear 2, dynein intermediate chain 2, and kinesin light chain protein levels were unchanged. Centractins and F-actin capping proteins are major determinants of the cytoskeleton and are involved in pivotal functions including cellular, organelle, and nuclear motility. Deranged centractins and F-actin capping proteins may represent or induce deficient axonal transport and may well contribute to deterioration of the cytoskeleton's mitotic functions in trisomy 21.  相似文献   

19.
Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein's activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus‐ends in an EB‐dependent manner or moving processively towards minus ends in an adaptor protein‐dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal‐D2 (BicD2) or the multifunctional regulator Lissencephaly‐1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus‐end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.  相似文献   

20.
The dynactin complex interacts with dynein and numerous other proteins to provide for a wide range of subcellular transport functions. A detailed understanding of the structure and subunit organization of dynactin should yield new insights into its function. In the present study, we used single particle analysis to obtain a two-dimensional averaged image of dynactin isolated from chick embryo brains and visualized by negative stain electron microscopy (EM). Each individual image, consisting of the shoulder/sidearm and the rod, closely resembled the previously published quick-freeze deep-etch rotary-shadow electron micrographs. However, the averaged image revealed novel structural features that may have functional significance. The bulky shoulder complex has a triangular shape and is 13 nm wide and 8 nm high. The rod, with an overall length of 40 nm, consists of clearly defined lobes that are apparently grouped into three parts, the pointed-end complex, the middle segment, and the extra lobes at the barbed end. The pointed-end complex reveals the characteristic protrusions and clefts that were previously observed only in the isolated pointed-end complex. In the middle segment, the seven lobes are fitted to the helical symmetry of F-actin. A narrow but prominent gap separates the previously unidentified extra three lobes at the barbed end from the middle segment. The averaged image we obtained contrasts dramatically with the simple Arp1 polymer that was previously reported by single particle analysis of bovine brain dynactin. These apparent structural differences are probably due to the greater stability and integrity of the chick embryo brain dynactin preparation. We propose a new structural model for dynactin, based on our observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号