首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CelS is the most abundant subunit and an exoglucanase component of the Clostridium thermocellum cellulosome, multicomponent cellulase complex. The product inhibition pattern of CelS was examined using purified recombinant CelS (rCelS) produced in Escherichia coli. The rCelS activity on cellopentaose was strongly inhibited by cellobiose. The rCelS activity was also inhibited by lactose. Glucose was only marginally inhibitory. Cellobiose appeared to inhibit the rCelS activity through a competitive mechanism. The inhibition was relieved when -glucosidase was added, presumably because of the conversion of cellobiose into glucose. These hydrolysis product inhibition patterns are consistent with those of the crude enzyme (cellulosome), suggesting that CelS is a rate-limiting factor in the activity of the cellulosome.  相似文献   

2.
Clostridium thermocellum ATCC 27405 produces an extremely complicated multi-component cellulase aggregate (cellulosome) highly active on crystalline cellulose. From the cellulosome, two subunits, CelS (or S s ;M r = 82 000) and CelL (or S l , CipA;M r = 250 000), have been identified as essential for crystalline cellulose degradation [Wu et al. (1988) Biochemistry 27:1703]. We have determined the DNA sequence of thecelS gene from four cloned DNA fragments encompassing this gene [Wang et al. (1993) J Bacteriol 175:1293]. To express the entirecelS gene inEscherichia coli, thecelS structural gene was amplified by the polymerase chain reaction (PCR) employing the PCR primers corresponding to sequences flanking the desired gene. This PCR product (2.1 x 103 bases; 2.1 kb) was cloned into anE. coli expression vector pRSET B. Subsequent expression of the cloned gene resulted in a fusion protein (rCelS;M r = 86 000) as inclusion bodies. The rCelS protein was recognized specifically by an anti-CelS antiserum in a Western blot analysis. The inclusion bodies were purified and solubilized in 5m urea. The refolded rCelS produced very little reducing sugar from carboxymethylcellulose. However, it showed a higher activity on the crystalline cellulose (Avicel) and an even higher activity on phosphoricacid-swollen Avicel. These results indicate that the CelS is an exoglucanase.  相似文献   

3.
A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fermentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low secretory cellulase levels.  相似文献   

4.
The cellulosome and cellulose degradation by anaerobic bacteria   总被引:33,自引:0,他引:33  
Despite its simple chemical composition, cellulose exists in a number of crystalline and amorphous topologies. Its insolubility and heterogeneity makes native cellulose a recalcitrant substrate for enzymatic hydrolysis. Microorganisms meet this challenge with the aid of a multi-enzyme system. Aerobic bacteria produce numerous individual, extra-cellular enzymes with binding modules for different cellulose conformations. Specific enzymes act in synergy to elicit effective hydrolysis. In contrast, anaerobic bacteria possess a unique extracellular multi-enzyme complex, called cellulosome. Up to 11 different enzymes are aligned on the non-catalytic scaffolding protein and thus ensure a high local concentration, together with the correct ratio and order of the components. These multi-enzyme complexes attach both to the cell envelope and to the substrate, mediating the proximity of the cells to the cellulose. Binding to the scaffolding stimulates the activity of each individual component towards the crystalline substrate. The most complex and best investigated cellulosome is that of the thermophilic bacterium Clostridium thermocellum, but a scheme for the cellulosomes of the mesophilic clostridia and the ruminococci emerges. Many crucial details of cellulose hydrolysis are still to be uncovered. Yet, a mechanistic model for the action of enzyme complexes on the surface of insoluble substrates becomes apparent and the application of enzymatic hydrolysis of cellulosic biomass can now be addressed.  相似文献   

5.
Endoglucanase 2 (EG2) of the cellulolytic ruminal anaerobe Bacteroides succinogenes is a 118-kilodalton (kDa) enzyme which binds to cellulose and produces cellotetraose as the end product of hydrolysis. The purified enzyme was treated with the protease trypsin in an attempt to isolate peptides which retained the ability to either hydrolyze soluble carboxymethyl cellulose or bind to insoluble cellulose. There was no loss in endoglucanase activity (carboxymethylcellulase) over a period of 2 h following the addition of trypsin. In comparison, there was a greater than eightfold reduction in the binding of carboxymethylcellulase activity to crystalline cellulose. A Lineweaver-Burk plot with amorphous cellulose as the substrate revealed that the trypsin-digested enzyme had an identical Vmax but a 1.9-fold-lower Km in comparison with the intact enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the trypsin-digested enzyme revealed two major peptides of 43 and 51 kDa (p43 and p51). The 43-kDa peptide was able to bind to both amorphous and crystalline cellulose, whereas p51 did not. Purified p51 had a molar activity toward carboxymethyl cellulose which was identical to that of the intact enzyme, but activity toward both amorphous and crystalline cellulose was reduced approximately twofold. Two high-titer monoclonal antibodies from mice immunized with the intact protein recognized p43 but not p51. The results are consistent with a bifunctional organization of EG2, in which the 118-kDa enzyme is composed of a 51-kDa catalytic domain and a highly antigenic 43-kDa substrate-binding domain. In terms of its domain structure and activity toward cellulose, EG2 is very similar to cellobiohydrolase II of Trichoderma reesei.  相似文献   

6.
E Morag  I Halevy  E A Bayer    R Lamed 《Journal of bacteriology》1991,173(13):4155-4162
In the anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum, efficient solubilization of the insoluble cellulose substrate is accomplished largely through the action of a cellulose-binding multienzyme complex, the cellulosome. A major cellobiohydrolase activity from the cellulosome has been traced to its Mr 75,000 S8 subunit, and an active fragment of this subunit was prepared by a novel procedure involving limited proteolytic cleavage. The truncated Mr 68,000 fragment, termed S8-tr, was purified by gel filtration and high-performance ion-exchange chromatography. The purified protein adsorbed weakly to amorphous cellulose, and its enzymatic action yielded cellobiose as the major end product from both amorphous and crystalline cellulose preparations. The high ratio of exo- to endo-beta-glucanase activities was supported by viscosimetric measurements. The use of model substrates showed that the smallest cellodextrin to be degraded was cellotetraose, but cellopentaose was degraded at a much greater rate. Cellobiose dramatically inhibited the cellulolytic activities. In the absence of calcium or other bivalent metal ions, both the truncated cellobiohydrolase activity of S8-tr and the true cellulase activity of the parent cellulosome were relatively unstable at temperatures above 50 degrees C. Cysteine further enhanced the stabilizing effect of calcium. This is the first report of a defined cellobiohydrolase in C. thermocellum. Its association with the cellulosome and the correspondence of several of their major distinctive properties suggest that this cellobiohydrolase plays a key role in the solubilization of cellulose by the intact cellulosomal complex.  相似文献   

7.
Cellulosomes are multi-enzyme complexes produced by certain anaerobic bacteria that exhibit efficient degradation of plant cell wall polysaccharides. To understand their enhanced levels of hydrolysis, we are investigating the effects of converting a free-cellulase system into a cellulosomal one. To achieve this end, we are replacing the cellulose-binding module of the native cellulases, produced by the aerobic bacterium Thermobifida fusca, with a cellulosome-derived dockerin module of established specificity, to allow their incorporation into defined "designer cellulosomes". In this communication, we have attached divergent dockerins to the two exoglucanases produced by T. fusca exoglucanase, Cel6B and Cel48A. The resultant fusion proteins were shown to bind efficiently and specifically to their matching cohesins, and their activities on several different cellulose substrates were compared. The lack of a cellulose-binding module in Cel6B had a deleterious effect on its activity on crystalline substrates. In contrast, the dockerin-bearing family-48 exoglucanase showed increased levels of hydrolytic activity on carboxymethyl cellulose and on both crystalline substrates tested, compared to the wild-type enzyme. The marked difference in the response of the two exoglucanases to incorporation into a cellulosome, suggests that the family-48 cellulase is more appropriate than the family-6 enzyme as a designer cellulosome component.  相似文献   

8.
CelE, one of the three major proteins of the cellulosome of Clostridium cellulolyticum, was characterized. The amino acid sequence of the protein deduced from celE DNA sequence led us to the supposition that CelE is a three-domain protein. Recombinant CelE and a truncated form deleted of the putative cellulose binding domain (CBD) were obtained. Deletion of the CBD induces a total loss of activity. Exhibiting rather low levels of activity on soluble, amorphous, and crystalline celluloses, CelE is more active on p-nitrophenyl-cellobiose than the other cellulases from this organism characterized to date. The main product of its action on Avicel is cellobiose (more than 90% of the soluble sugars released), and its attack on carboxymethyl cellulose is accompanied by a relatively small decrease in viscosity. All of these features suggest that CelE is a cellobiohydrolase which has retained a certain capacity for random attack mode. We measured saccharification of Avicel and bacterial microcrystalline cellulose by associations of CelE with four other cellulases from C. cellulolyticum and found that CelE acts synergistically with all tested enzymes. The positive influence of CelE activity on the activities of other cellulosomal enzymes may explain its relative abundance in the cellulosome.  相似文献   

9.
W K Wang  K Kruus    J H Wu 《Journal of bacteriology》1993,175(5):1293-1302
Clostridium thermocellum ATCC 27405 produces an extracellular cellulase system capable of hydrolyzing crystalline cellulose. The enzyme system involves a multicomponent protein aggregate (the cellulosome) with a total molecular weight in the millions, impeding mechanistic studies. However, two major components of the aggregate, SS (M(r) = 82,000) and SL (M(r) = 250,000), which act synergistically to hydrolyze crystalline cellulose, have been identified (J. H. D. Wu, W. H. Orme-Johnson, and A. L. Demain, Biochemistry 27:1703-1709, 1988). To further study this synergism, we cloned and sequenced the gene (celS) coding for the SS (CelS) protein by using a degenerate, inosine-containing oligonucleotide probe whose sequence was derived from the N-terminal amino acid sequence of the CelS protein. The open reading frame of celS consisted of 2,241 bp encoding 741 amino acid residues. It encoded the N-terminal amino acid sequence and two internal peptide sequences determined for the native CelS protein. A putative ribosome binding site was identified at the 5' end of the gene. A putative signal peptide of 27 amino acid residues was adjacent to the N terminus of the CelS protein. The predicted molecular weight of the secreted protein was 80,670. The celS gene contained a conserved reiterated sequence encoding 24 amino acid residues found in proteins encoded by many other clostridial cel or xyn genes. A palindromic structure was found downstream from the open reading frame. The celS gene is unique among the known cel genes of C. thermocellum. However, it is highly homologous to the partial open reading frame found in C. cellulolyticum and in Caldocellum saccharolyticum, indicating that these genes belong to a new family of cel genes.  相似文献   

10.
CbpA, the scaffolding protein of Clostridium cellulovorans cellulosomes, possesses one family 3 cellulose binding domain, nine cohesin domains, and four hydrophilic domains (HLDs). Among the three types of domains, the function of the HLDs is still unknown. We proposed previously that the HLDs of CbpA play a role in attaching the cellulosome to the cell surface, since they showed some homology to the surface layer homology domains of EngE. Several recombinant proteins with HLDs (rHLDs) and recombinant EngE (rEngE) were examined to determine their binding to the C. cellulovorans cell wall fraction. Tandemly linked rHLDs showed higher affinity for the cell wall than individual rHLDs showed. EngE was shown to have a higher affinity for cell walls than rHLDs have. C. cellulovorans native cellulosomes were found to have higher affinity for cell walls than rHLDs have. When immunoblot analysis was carried out with the native cellulosome fraction bound to cell wall fragments, the presence of EngE was also confirmed, suggesting that the mechanism anchoring CbpA to the C. cellulovorans cell surface was mediated through EngE and that the HLDs play a secondary role in the attachment of the cellulosome to the cell surface. During a study of the role of HLDs on cellulose degradation, the mini-cellulosome complexes with HLDs degraded cellulose more efficiently than complexes without HLDs degraded cellulose. The rHLDs also showed binding affinity for crystalline cellulose and carboxymethyl cellulose. These results suggest that the CbpA HLDs play a major role and a minor role in C. cellulovorans cellulosomes. The primary role increases cellulose degradation activity by binding the cellulosome complex to the cellulose substrate; secondarily, HLDs aid the binding of the CbpA/cellulosome to the C. cellulovorans cell surface.  相似文献   

11.
The genome of Clostridium thermocellum contains a number of genes for polysaccharide degradation-associated proteins that are not cellulosome bound. The list includes beta-glucanases, glycosidases, chitinases, amylases and a xylanase. One of these 'soluble'-enzyme genes codes for a second glycosyl hydrolase (GH)48 cellulase, Cel48Y, which was expressed in Escherichia coli and biochemically characterized. It is a cellobiohydrolyse with activity on native cellulose such as microcrystalline and bacterial cellulose, and low activity on carboxymethylcellulose. It is about 100 times as active on amorphic cellulose and mixed-linkage barley beta-glucan compared with cellulase Cel9I. The enzyme Cel48Y shows a distinct synergism of 2.1 times with the noncellulosomal processive endoglucanase Cel9I on highly crystalline bacterial cellulose at a 17-fold excess of Cel48Y over Cel9I. These data show that C. thermocellum has, besides the cellulosome, the genes for a second cellulase system for the hydrolysis of crystalline cellulose that is not particle bound.  相似文献   

12.
13.
Erwinia chrysanthemi produces a battery of hydrolases and lyases which are very effective in the maceration of plant cell walls. Although two endoglucanases (CelZ and CelY; formerly EGZ and EGY) are produced, CelZ represents approximately 95% of the total carboxymethyl cellulase activity. In this study, we have examined the effectiveness of CelY and CelZ alone and of combinations of both enzymes using carboxymethyl cellulose (CMC) and amorphous cellulose (acid-swollen cellulose) as substrates. Synergy was observed with both substrates. Maximal synergy (1.8-fold) was observed for combinations containing primarily CelZ; the ratio of enzyme activities produced was similar to those produced by cultures of E. chrysanthemi. CelY and CelZ were quite different in substrate preference. CelY was unable to hydrolyze soluble cellooligosaccharides (cellotetraose and cellopentaose) but hydrolyzed CMC to fragments averaging 10.7 glucosyl units. In contrast, CelZ readily hydrolyzed cellotetraose, cellopentaose, and amorphous cellulose to produce cellobiose and cellotriose as dominant products. CelZ hydrolyzed CMC to fragments averaging 3.6 glucosyl units. In combination, CelZ and CelY hydrolyzed CMC to products averaging 2.3 glucosyl units. Synergy did not require the simultaneous presence of both enzymes. Enzymatic modification of the substrate by CelY increased the rate and extent of hydrolysis by CelZ. Full synergy was retained by the sequential hydrolysis of CMC, provided CelY was used as the first enzyme. A general mechanism is proposed to explain the synergy between these two enzymes based primarily on differences in substrate preference.  相似文献   

14.
《Gene》1998,211(1):39-47
The nucleotide sequence of P70, one of the three major subunits of the Clostridium cellulovorans cellulosome, has been determined. The gene designated as exgS (Genbank Accession No. U34793) consists of 2112 bp and encodes a protein containing 703 amino acids with a molecular mass of 77.7 kDa. ExgS has a putative signal peptide sequence of 32 amino acids. The N-terminal region is separated from the C-terminal region by a short Pro–Thr–Pro linker. The C-terminal region of ExgS contains a duplicated sequence (DS), each sequence consisting of 22 amino acids. exgS, located 67 bp downstream of cbpA in the chromosome, is immediately upstream of a gene encoding a family 9 type endoglucanase that we have designated as EngH. This gene cluster to date consists of regA–cbpAexgSengH. Recombinant ExgS (rExgS) containing no signal peptide was expressed in E. coli. The rExgS actively digested several forms of cellulose, including Avicel, Sigmacell101, crystalline cellulose, and xylan, but not carboxymethyl cellulose (CMC). Cellotetraose was the smallest oligosaccharide substrate for rExgS. The enzymatic studies indicated that ExgS was an exoglucanase and had some properties similar to that of CelS from C. thermocellum and CelF from C. cellulolyticum. An exoglucanase has now been found to be a component of the C. cellulovorans cellulosome as well as the previously reported endoglucanases.  相似文献   

15.
The exo-loop of Trichoderma reesei cellobiohydrolase Cel7A forms the roof of the active site tunnel at the catalytic centre. Mutants were designed to study the role of this loop in crystalline cellulose degradation. A hydrogen bond to substrate made by a tyrosine at the tip of the loop was removed by the Y247F mutation. The mobility of the loop was reduced by introducing a new disulphide bridge in the mutant D241C/D249C. The tip of the loop was deleted in mutant Delta(G245-Y252). No major structural disturbances were observed in the mutant enzymes, nor was the thermostability of the enzyme affected by the mutations.The Y247F mutation caused a slight k(cat) reduction on 4-nitrophenyl lactoside, but only a small effect on cellulose hydrolysis. Deletion of the tip of the loop increased both k(cat) and K(M) and gave reduced product inhibition. Increased activity was observed on amorphous cellulose, while only half the original activity remained on crystalline cellulose. Stabilisation of the exo-loop by the disulphide bridge enhanced the activity on both amorphous and crystalline cellulose. The ratio Glc(2)/(Glc(3)+Glc(1)) released from cellulose, which is indicative of processive action, was highest with Tr Cel7A wild-type enzyme and smallest with the deletion mutant on both substrates. Based on these data it seems that the exo-loop of Tr Cel7A has evolved to facilitate processive crystalline cellulose degradation, which does not require significant conformational changes of this loop.  相似文献   

16.
Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly.  相似文献   

17.
In this study, novel cellulosome chimeras exhibiting atypical geometries and binding modes, wherein the targeting and proximity functions were directly incorporated as integral parts of the enzyme components, were designed. Two pivotal cellulosomal enzymes (family 48 and 9 cellulases) were thus appended with an efficient cellulose-binding module (CBM) and an optional cohesin and/or dockerin. Compared to the parental enzymes, the chimeric cellulases exhibited improved activity on crystalline cellulose as opposed to their reduced activity on amorphous cellulose. Nevertheless, the various complexes assembled using these engineered enzymes were somewhat less active on crystalline cellulose than the conventional designer cellulosomes containing the parental enzymes. The diminished activity appeared to reflect the number of protein-protein interactions within a given complex, which presumably impeded the mobility of their catalytic modules. The presence of numerous CBMs in a given complex, however, also reduced their performance. Furthermore, a "covalent cellulosome" that combines in a single polypeptide chain a CBM, together with family 48 and family 9 catalytic modules, also exhibited reduced activity. This study also revealed that the cohesin-dockerin interaction may be reversible under specific conditions. Taken together, the data demonstrate that cellulosome components can be used to generate higher-order functional composites and suggest that enzyme mobility is a critical parameter for cellulosome efficiency.  相似文献   

18.

We recently discovered a novel glycoside hydrolase family 6 (GH6) cellobiohydrolase from Paenibacillus curdlanolyticus B-6 (PcCel6A), which is rarely found in bacteria. This enzyme is a true exo-type cellobiohydrolase which exhibits high substrate specificity on amorphous cellulose and low substrate specificity on crystalline cellulose, while this showed no activity on substitution substrates, carboxymethyl cellulose and xylan, distinct from all other known GH6 cellobiohydrolases. Product profiles, HPLC analysis of the hydrolysis products and a schematic drawing of the substrate-binding subsites catalysing cellooligosaccharides can explain the new mode of action of this enzyme which prefers to hydrolyse cellopentaose. PcCel6A was not inhibited by glucose or cellobiose at concentrations up to 300 and 100 mM, respectively. A good synergistic effect for glucose production was found when PcCel6A acted together with processive endoglucanase Cel9R from Clostridium thermocellum and β-glucosidase CglT from Thermoanaerobacter brockii. These properties of PcCel6A make it a suitable candidate for industrial application in the cellulose degradation process.

  相似文献   

19.
Summary The synergistic action of purified cellulases from Trichoderma reesei in hydrolysis of cellulose decreased with increasing substrate concentration, depended strongly on the the type of cellulose used, and was maximal on crystalline cellulose. Contrarily, the activity of the individual cellulases was highest on amorphous cellulose. The binary combinations CBH I/EG III and CBH I/CBH II exhibited the greatest degree of synergism on crystalline cellulose.  相似文献   

20.
Artificial cellulase complexes active on crystalline cellulose were reconstituted in vitro from a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of a C. thermocellum cipA mutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. The in vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities for in vitro complex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号