首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trk proto-oncogene encodes a receptor for nerve growth factor.   总被引:127,自引:0,他引:127  
R Klein  S Q Jing  V Nanduri  E O'Rourke  M Barbacid 《Cell》1991,65(1):189-197
Two classes of receptors with distinct affinities for nerve growth factor (NGF) have been identified. The low affinity receptor (Kd approximately 10(-9) to 10(-8) M) is a cysteine-rich glycoprotein encoded by the previously characterized LNGFR gene. The structural nature of the high affinity receptor (Kd approximately 10(-11) to 10(-10) M) has yet to be established. In this study we show that the product of the human trk proto-oncogene (gp140trk) binds NGF with high affinity. Moreover, NGF could be chemically cross-linked to the endogenous gp140trk present in rat PC12 pheochromocytoma cells as well as to gp140trk ectopically expressed in mouse fibroblasts and in insect Sf9 cells. High affinity binding of NGF to gp140trk can occur in the absence of low affinity LNGFR receptors, at least in nonneural cells. Addition of NGF to PC12 cells elicits rapid phosphorylation of gp140trk on tyrosine residues and stimulates its tyrosine kinase activity. These results indicate that gp140trk is a functional NGF receptor that mediates at least some of the signal transduction processes initiated by this neurotrophic factor.  相似文献   

2.
In utero immune deprivation of the neurotrophic molecule nerve growth factor (NGF) results in the death of most, but not all, mammalian dorsal root ganglion (DRG) neurons. The recent identification of trk, trkB, and trkC as the putative high affinity receptors for NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively, has allowed an examination of whether their expression by DRG neurons correlates with differential sensitivity to immune deprivation of NGF. In situ hybridization demonstrates that virtually all neurons expressing trk are lost during in utero NGF deprivation. Most, if not all, neurons expressing trkB and trkC survive this treatment. In contrast, the low affinity NGF receptor, p75NGFR, is expressed in both NGF deprivation-resistant and -sensitive neurons. These experiments show that DRG neurons expressing trk require NGF for survival. Furthermore, at least some of the DRG neurons that do not require NGF express the high affinity receptor for another neurotrophin. Finally, these experiments provide evidence that trk, and not p75NGFR, is the primary effector of NGF action in vivo.  相似文献   

3.
The product of the trk proto-oncogene encodes a receptor for nerve growth factor (NGF). Here we show that NGF is a powerful mitogen that can induce resting NIH 3T3 cells to enter S phase, grow in semisolid medium, and become morphologically transformed. These mitogenic effects are absolutely dependent on expression of gp140trk receptors, but do not require the presence of the previously described low affinity NGF receptor. gp140trk also serves as a receptor for the related factor neurotrophin-3 (NT-3), but not for brain-derived neurotrophic factor. Both NGF and NT-3 induce the rapid phosphorylation of gp140trk receptors and the transient expression of c-Fos proteins. However, NT-3 appears to elicit more limited mitogenic responses than NGF. These results indicate that the product of the trk proto-oncogene is sufficient to mediate signal transduction processes induced by NGF and NT-3, at least in proliferating cells.  相似文献   

4.
Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal transduction is less clear. The crystal structure of NGF has recently been determined, although structures involved in receptor binding and biological activity are unknown. Here we show that Lys-32, Lys-34, and Lys-95 form a positively charged interface involved in binding to p75NGFR. Simultaneous modification of Lys-32 with either of the two other lysines resulted in loss of binding to p75NGFR. Despite the lack of binding to p75NGFR, these mutants retained binding to p140trk and biological activity, demonstrating a functional dissociation between the two NGF receptors.  相似文献   

5.
To investigate the role of the gp140trk receptor tyrosine kinase in nerve growth factor (NGF)-induced differentiation, we have overexpressed gp140trk in the NGF-responsive PC12 cell line. Here we demonstrate that overexpression of gp140trk results in marked changes in NGF-induced differentiation. Whereas PC12 cells elaborated neurites after 2 days of continuous exposure to NGF, PC12 cells overexpressing gp140trk by 20-fold(trk-PC12) began this process within hours. Compared with wild-type PC12 cells, trk-PC12 exhibited an increase in both high and low affinity NGF-binding sites. Furthermore, trk-PC12 cells displayed an enhanced level of NGF-dependent gp140trk autophosphorylation, and this activity was sustained for many hours following ligand binding. The tyrosine phosphorylation or activity of several cellular proteins, such as PLC-gamma 1, PI-3 kinase, and Erk1 and the expression of the mRNA for the late response gene transin were also sustained as a consequence of gp140trk overexpression. The data indicate that overexpression of gp140trk in PC12 cells markedly accelerates NGF-induced differentiation pathways, possibly through the elevation of gp140trk tyrosine kinase activity.  相似文献   

6.
S Jing  P Tapley  M Barbacid 《Neuron》1992,9(6):1067-1079
We have investigated the molecular nature of the high affinity nerve growth factor (NGF) receptors by using cell lines expressing gp75LNGFR and gp140trk. Our results suggest that gp75LNGFR and gp140trk interact with NGF independently and that only gp140trk mediates NGF signaling. NGF binds to gp140trk with picomolar affinity and induces its phosphorylation on tyrosine residues regardless of the presence of gp75LNGFR. NGF-gp140trk complexes display the slow dissociation rate and rapid internalization characteristics of high affinity NGF receptors. Cross-linking studies reveal the existence of gp75LNGFR and gp140trk homodimers. However, we were unable to detect gp75LNGFR-gp140trk heterodimers. Coexpression in COS cells of wild-type and kinase deficient mutants reveals that gp140trk receptors can undergo intermolecular phosphorylation, indicating the formation of functional homodimers. Moreover, these kinase deficient mutants inhibit NGF-induced signaling through wild-type gp140trk receptors. These results indicate that the functional high affinity NGF receptors consist of gp140trk homodimeric (or oligomeric) complexes.  相似文献   

7.
Abstract: We have recently shown that the small GTP binding protein p21 ras is essential for nerve growth factor (NGF)-mediated survival of peripheral embryonic chick dorsal root ganglia (DRG) sensory but not sympathetic neurons. To investigate at which level of the signaling cascade the pathways diverge, we have studied the time-resolved pattern of NGF-stimulated tyrosine phosphorylation of proteins within 4 h after addition of the neurotrophin. In both chick sympathetic neurons [embryonic day (E) 12] and DRG sensory neurons (E9) NGF induces within 1 min the autophosphorylation of the receptor tyrosine kinase p140trk. However, the pattern of substrate protein tyrosine phosphorylation downstream of p140trk is distinctly different in both neuronal subtypes. In sympathetic neurons, we observe within 1 min the tyrosine phosphorylation of a new substrate protein, p105, reaching maximal levels at 3 min. Tyrosine phosphorylation of p105 remains elevated for up to 4 h. Subsequent to p105, NGF induces the tyrosine phosphorylation of p42, a protein belonging to the family of mitogen-activated protein (MAP) kinases. This stimulation is transient, reaching maximal levels at 10 min and returning to very low levels already after 2 h. In DRG sensory neurons, tyrosine phosphorylation of p105 is weak and very short lived, disappearing already after treatment with NGF for 10 min. In contrast, activation of MAP kinase p42 in DRG sensory neurons is more stable than in sympathetic neurons. All NGF-stimulated tyrosine phosphorylation events were inhibited by preincubation of neurons with the tropomyosin-related kinase (trk) inhibitor K252a. We suggest the working hypothesis that persistent tyrosine phosphorylation of p105 may play a role in the p21ras-independent NGF survival pathway of chick sympathetic neurons.  相似文献   

8.
Dysfunction of cholinergic basal forebrain (CBF) neurons of the nucleus basalis (NB) is a cardinal feature of Alzheimer's disease (AD) and correlates with cognitive decline. Survival of CBF neurons depends upon binding of nerve growth factor (NGF) with high-affinity (trkA) and low-affinity (p75(NTR)) neurotrophin receptors produced within CBF neurons. Since trkA and p75(NTR) protein levels are reduced within CBF neurons of people with mild cognitive impairment (MCI) and mild AD, trkA and/or p75(NTR) gene expression deficits may drive NB degeneration. Using single cell expression profiling methods coupled with custom-designed cDNA arrays and validation with real-time quantitative PCR (qPCR) and in situ hybridization, individual cholinergic NB neurons displayed a significant down regulation of trkA, trkB, and trkC expression during the progression of AD. An intermediate reduction was observed in MCI, with the greatest decrement in mild to moderate AD as compared to controls. Importantly, trk down regulation is associated with cognitive decline measured by the Global Cognitive Score (GCS) and the Mini-Mental State Examination (MMSE). In contrast, there is a lack of regulation of p75(NTR) expression. Thus, trk defects may be a molecular marker for the transition from no cognitive impairment (NCI) to MCI, and from MCI to frank AD.  相似文献   

9.
The trk tyrosine kinase proto-oncogene product gp140prototrk binds nerve growth factor (NGF) and is rapidly and selectively activated by this neurotrophic factor. To determine whether gp140prototrk is involved in transducing a functional NGF signal, PC12 cell mutants (PC12nnr) deficient in high affinity NGF binding and unresponsive to NGF were used. Northern analysis revealed that these mutant cells have greatly reduced levels of trk expression. PC12nnr cultures were transiently transfected with expression vectors encoding the full-length rat trk cDNA and assessed for responsiveness to NGF. Expression of exogenous trk rescued the capacity for NGF-promoted neurite outgrowth, cellular hypertrophy, and serum-free survival by these cells. These results indicate that gp140prototrk is necessary for functional NGF signal transduction.  相似文献   

10.
We investigated the involvement of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the initiation of signal transduction by nerve growth factor (NGF) in the rat pheochromocytoma PC12 cell line. PtdIns 3-kinase catalyzes the formation of phosphoinositides with phosphate in the D-3 position of the inositol ring and previously has been found to associate with other activated protein tyrosine kinases, including growth factor receptor tyrosine kinases. Anti-phosphotyrosine immunoprecipitates had PtdIns 3-kinase activity that reached a maximum (9 times the basal activity) after a 5-min exposure of PC12 cells to NGF (100 ng/ml). Since NGF activates the tyrosine kinase activity of gp140trk, the protein product of the trk proto-oncogene, we also examined the association of PtdIns 3-kinase with gp140trk. Anti-gp140trk immunoprecipitates from NGF-stimulated PC12 cells had increased PtdIns 3-kinase activity compared to that of unstimulated cells, and larger increases were detected in cells overexpressing gp140trk, indicating that PtdIns 3-kinase associates with gp140trk. NGF produced large increases in [32P]phosphatidylinositol 3,4-bisphosphate and [32P]phosphatidylinositol 3,4,5-trisphosphate in PC12 cells labeled with [32P]orthophosphate, indicating an increase in PtdIns 3-kinase activity in intact cells. Using an anti-85-kDa PtdIns 3-kinase subunit antibody, we found that NGF promoted the tyrosine phosphorylation of an 85-kDa protein and two proteins close to 110 kDa. These studies demonstrate that NGF activates PtdIns 3-kinase and promotes its association with gp140trk and also show that NGF promotes the tyrosine phosphorylation of the 85-kDa subunit of PtdIns 3-kinase. Thus, PtdIns 3-kinase activation appears to be involved in differentiation as well as mitogenic responses.  相似文献   

11.
M Ohmichi  S J Decker  A R Saltiel 《Neuron》1992,9(4):769-777
Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.  相似文献   

12.
The rat pheochromocytoma PC12 cell line differentiates into a sympathetic neuronal phenotype upon treatment with either nerve growth factor (NGF) or basic fibroblast growth factor. The alkaloid-like compound K-252a has been demonstrated to be a specific inhibitor of NGF-induced biological responses in PC12 cells (Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., and Guroff, G. (1988) J. Neurosci. Res. 8, 715-721). NGF interacts with the protein product of the proto-oncogene trk and rapidly stimulates the tyrosine phosphorylation of both p140prototrk and a number of cellular substrates. Here we show that these phosphorylation events are directly inhibited in PC12 cells by K252a in a dose-dependent manner, indicating that the site of action of this inhibitor is at the NGF receptor level. K-252a inhibits p140prototrk activity in vitro, demonstrating that K-252a has a direct effect on the p140prototrk tyrosine kinase. Though many of the biochemical responses to NGF in PC12 cells are mimicked by basic fibroblast growth factor and epidermal growth factor, K-252a has no effect on the action of these growth factors in PC12 cells, demonstrating that the initial biological events initiated by NGF are distinctive during neuronal differentiation.  相似文献   

13.
The levels of nerve growth factor (NGF) and its mRNA in the rat central nervous system were determined by two-site enzyme immunoassay and quantitative Northern blots, respectively. Relatively high NGF levels (0.4-1.4 ng NGF/g wet weight) were found both in the regions innervated by the magnocellular cholinergic neurons of the basal forebrain (hippocampus, olfactory bulb, neocortex) and in the regions containing the cell bodies of these neurons (septum, nucleus of the diagonal band of Broca, nucleus basalis of Meynert). Comparatively low, but significant NGF levels (0.07-0.21 ng NGF/g wet weight) were found in various other brain regions. mRNANGF was found in the hippocampus and cortex but not in the septum. This suggests that magnocellular cholinergic neurons of the basal forebrain are supplied with NGF via retrograde axonal transport from their fields of innervation. These results, taken together with those of previous studies showing that these neurons are responsive to NGF, support the concept that NGF acts as trophic factor for magnocellular cholinergic neurons.  相似文献   

14.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

15.
16.
The cellular actions of nerve growth factor (NGF) involve regulation of protein phosphorylation. In PC-12 pheochromocytoma cells, exposure of [125I]NGF followed by crosslinking indicates that the ligand binds to two discreet receptors, the previously described 75 kd protein, as well as the trk proto-oncogene product pp140c-trk. Competition experiments reveal that of the two, pp 140c-trk binds to NGF with higher affinity. Following exposure to NGF, pp140c-trk undergoes a rapid autophosphorylation on tyrosine residues, and concomitantly phosphorylates and associates with phospholipase C gamma 1 (PLC gamma 1), through interaction with its src homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent homology domains. The binding of NGF to pp140c-trk with high affinity, the NGF-dependent activation of its tyrosine kinase activity and the specific association with the effector molecule, PLC gamma 1, suggests that this is the biologically relevant signaling receptor for NGF.  相似文献   

17.
Abstract: It is well documented that nerve growth factor (NGF) plays an important role in maintaining functions of cholinergic basal forebrain neurons. In the present study, we tested the hypothesis that cholinergic activity controls NGF levels in cholinoceptive neurons of the cerebral cortex and hippocampus. To address that question, we used both cholinergic deafferentation of cerebral cortex and hippocampus by cholinergic immunolesion with 192IgG-saporin and chronic pharmacological treatment of sham-treated and immunolesioned rats with the cholinergic agonist pilocarpine and the cholinergic antagonist scopolamine. We observed an increase in NGF protein levels in the cortex and hippocampus after cholinergic immunolesions and also after muscarinic receptor blockade by chronic intracerebroventricular scopolamine infusion in sham-treated rats after 2 weeks. There was no further increase in the accumulation of NGF after scopolamine treatment of immunolesioned rats. Chronic infusion of pilocarpine had no effect on cortical and hippocampal NGF protein levels in sham-treated rats. In rats with cholinergic immunolesions, however, pilocarpine did prevent the lesion-induced accumulation of NGF. There was no effect of cholinergic lesion and drug treatment on cortical or hippocampal NGF mRNA levels, consistent with the importance of NGF retrograde transport as opposed to its de novo synthesis. This study provides strong evidence for the hypothesis that there is cholinergic control of cortical and hippocampal NGF protein but not mRNA levels in adult rats.  相似文献   

18.
In PC12 cells, retinoic acid (RA) stimulates the expression of p75NGFR, a component of the nerve growth factor (NGF) receptor, as indicated by a rapid increase in p75NGFR mRNA, an increase in the binding of 125I-labeled NGF to p75NGFR, and an increase in the binding of NGF to low affinity sites. RA-treated cells are more sensitive to NGF, but not to either fibroblast growth factor or phorbol 12-myristate 13-acetate, showing that RA has a specific effect on the responsiveness of PC12 cells to NGF. Exposure to RA leads neither to an increase in the expression of mRNA for trk, another component of the NGF receptor, nor to an increase in binding to high affinity receptors, suggesting that an increase in the expression of p75NGFR is sufficient to make cells more sensitive to NGF. This work suggests that, in addition to having direct effects on gene expression, RA can indirectly modulate differentiation of neurons by modifying their expression of cell surface receptors to peptide growth factors.  相似文献   

19.
Neuronal plastic rearrangements during the development and functioning of neurons are largely regulated by trophic factors, including nerve growth factor (NGF). NGF is also involved in the pathogenesis of Alzheimer’s disease. In the brain, NGF is produced in structures innervated by basal forebrain cholinergic neurons and retrogradely transported along the axons to the bodies of cholinergic neurons. NGF is essential for normal development and functioning of the basal forebrain; it affects formation of the dendritic tree and modulates the activities of choline acetyltransferase and acetylcholinesterase in basal forebrain neurons. The trophic effect of NGF is mediated through its interactions with TrkA and p75 receptors. Experimental and clinical studies have shown that brain levels of NGF are altered in various pathologies. However, the therapeutic use of NGF is limited by its poor ability to penetrate the blood–brain barrier, adverse side effects that are due to the pleiotropic action of this factor, and the possibility of immune response to NGF. For this reason, the development of gene therapy methods for treating NGF deficit-associated pathologies is of particular interest. Another approach is creation of low molecular weight NGF mimetics that would interact with the corresponding receptors and display high biological activity but be free of the unfavorable effects of NGF.  相似文献   

20.
The presence of β-nerve growth factor (NGF) and its cell surface receptor (NGF-R) in the brain has been well established by a variety of experimental techniques in recent years. In particular, the molecular cloning of NGF and NGF-R as well as the development of sensitive two-site ELISA techniques for determining the levels of NGF and antibodies to NGF-R suitable for immunohistochemistry have led to rapid accumulation of data in this field from many laboratories. A main finding is the function of NGF in the cholinergic neurons of the basal forebrain, expressing NGF receptors and responding to the factor by increased activity of choline acetyltransferase, and the production of NGF in cortical areas and hippocampus comprising terminal areas for the cholinergic projections from the basal forebrain. In addition, findings suggest that additional neurons in the brain and spinal cord may utilize NGF, notably during development and possibly also after lesion of the adult CNS. Moreover, observations indicate that endogenous levels of NGF are lowered in the aged rat brain concomitant with losses of NGF-dependent neurons in the basal forebrain. The involvement of NGF in human neurodegenerative diseases is not established but the application of NGF to degenerating cholinergic neurons in Alzheimer patients may prove useful. A promising approach to achieve this goal is the production of biologically active, recombinant NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号