首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
SMK-1, an essential regulator of DAF-16-mediated longevity   总被引:12,自引:0,他引:12  
Wolff S  Ma H  Burch D  Maciel GA  Hunter T  Dillin A 《Cell》2006,124(5):1039-1053
  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Low environmental temperature and dietary restriction (DR) extend lifespan in diverse organisms. In the fruit fly Drosophila, switching flies between temperatures alters the rate at which mortality subsequently increases with age but does not reverse mortality rate. In contrast, DR acts acutely to lower mortality risk; flies switched between control feeding and DR show a rapid reversal of mortality rate. Dietary restriction thus does not slow accumulation of aging‐related damage. Molecular species that track the effects of temperatures on mortality but are unaltered with switches in diet are therefore potential biomarkers of aging‐related damage. However, molecular species that switch upon instigation or withdrawal of DR are thus potential biomarkers of mechanisms underlying risk of mortality, but not of aging‐related damage. Using this approach, we assessed several commonly used biomarkers of aging‐related damage. Accumulation of fluorescent advanced glycation end products (AGEs) correlated strongly with mortality rate of flies at different temperatures but was independent of diet. Hence, fluorescent AGEs are biomarkers of aging‐related damage in flies. In contrast, five oxidized and glycated protein adducts accumulated with age, but were reversible with both temperature and diet, and are therefore not markers either of acute risk of dying or of aging‐related damage. Our approach provides a powerful method for identification of biomarkers of aging.  相似文献   

16.
17.
18.
Reducing insulin/IGF‐1 signaling (IIS) extends lifespan, promotes protein homeostasis (proteostasis), and elevates stress resistance of worms, flies, and mammals. How these functions are orchestrated across the organism is only partially understood. Here, we report that in the nematode Caenorhabditis elegans, the IIS positively regulates the expression of caveolin‐1 (cav‐1), a gene which is primarily expressed in neurons of the adult worm and underlies the formation of caveolae, a subtype of lipid microdomains that serve as platforms for signaling complexes. Accordingly, IIS reduction lowers cav‐1 expression and lessens the quantity of neuronal caveolae. Reduced cav‐1 expression extends lifespan and mitigates toxic protein aggregation by modulating the expression of aging‐regulating and signaling‐promoting genes. Our findings define caveolae as aging‐governing signaling centers and underscore the potential for cav‐1 as a novel therapeutic target for the promotion of healthy aging.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号