首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycobacterium tuberculosis is one of the worlds' most successful and sophisticated pathogens. It is estimated that over 2 billion people today harbour latent M. tuberculosis infection without any clinical symptoms. As most new cases of active tuberculosis (TB) arise from this (growing) number of latently infected individuals, urgent measures to control TB reactivation are required, including post-exposure/therapeutic vaccines. The current bacille Calmette-Guérin (BCG) vaccine and all new generation TB vaccines being developed and tested are essentially designed as prophylactic vaccines. Unfortunately, these vaccines are unlikely to be effective in individuals already latently infected with M. tuberculosis. Here, we argue that detailed analysis of M. tuberculosis genes that are switched on predominantly during latent stage infection may lead to the identification of new antigenic targets for anti-TB strategies. We will describe essential host-pathogen interactions in TB with particular emphasis on TB latency and persistent infection. Subsequently, we will focus on novel groups of late-stage specific genes, encoded amongst others by the M. tuberculosis dormancy (dosR) regulon, and summarise recent studies describing human T-cell recognition of these dormancy antigens in relation to (latent) M. tuberculosis infection. We will discuss the possible relevance of these new classes of antigens for vaccine development against TB.  相似文献   

2.
The success and failure of BCG - implications for a novel tuberculosis vaccine   总被引:15,自引:0,他引:15  
Over the past 50 years, the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine against tuberculosis (TB) has maintained its position as the world's most widely used vaccine, despite showing highly variable efficacy (0-80%) in different trials. The efficacy of BCG in adults is particularly poor in tropical and subtropical regions. Studies in animal models of TB, supported by data from clinical BCG trials in humans, indicate that this failure is related to pre-existing immune responses to antigens that are common to environmental mycobacteria and Mycobacterium tuberculosis. Here, we discuss the potential mechanisms behind the variation of BCG efficacy and their implications for an improved TB vaccination strategy.  相似文献   

3.
Previously we have shown that Ag85B-ESAT-6 is a highly efficient vaccine against tuberculosis. However, because the ESAT-6 Ag is also an extremely valuable diagnostic reagent, finding a vaccine as effective as Ag85B-ESAT-6 that does not contain ESAT-6 is a high priority. Recently, we identified a novel protein expressed by Mycobacterium tuberculosis designated TB10.4. In most infected humans, TB10.4 is strongly recognized, raising interest in TB10.4 as a potential vaccine candidate and substitute for ESAT-6. We have now examined the vaccine potential of this protein and found that vaccination with TB10.4 induced a significant protection against tuberculosis. Fusing Ag85B to TB10.4 produced an even more effective vaccine, which induced protection against tuberculosis comparable to bacillus Calmette-Guerin vaccination and superior to the individual Ag components. Thus, Ag85B-TB10 represents a new promising vaccine candidate against tuberculosis. Furthermore, having now exchanged ESAT-6 for TB10.4, we show that ESAT-6, apart from being an excellent diagnostic reagent, can also be used as a reagent for monitoring vaccine efficacy. This may open a new way for monitoring vaccine efficacy in clinical trials.  相似文献   

4.
Who puts the tubercle in tuberculosis?   总被引:1,自引:0,他引:1  
Tuberculosis (TB), an illness that mainly affects the respiratory system, is one of the world's most pernicious diseases. TB currently infects one-third of the world's population and kills approximately 1.7 million people each year. Most infected individuals fail to progress to full-blown disease because the TB bacilli are 'walled off' by the immune system inside a tissue nodule known as a granuloma. The granuloma's primary function is one of containment and it prevents the dissemination of the mycobacteria. But what is the role of the TB bacillus in the progression of the granuloma? This Review explores how Mycobacterium tuberculosis influences granuloma formation and maintenance, and ensures the spread of the disease.  相似文献   

5.
Vaccination with Bacille Calmette-Guérin (BCG) has traditionally been used for protection against disease caused by the bacterium Mycobacterium tuberculosis (M.tb). The efficacy of BCG, especially against pulmonary tuberculosis (TB) is variable. The best protection is conferred in temperate climates and there is close to zero protection in many tropical areas with a high prevalence of both tuberculous and non-tuberculous mycobacterial species. Although interferon (IFN)-γ is known to be important in protection against TB disease, data is emerging on a possible role for interleukin (IL)-17 as a key cytokine in both murine and bovine TB vaccine studies, as well as in humans. Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) is a novel TB vaccine designed to enhance responses induced by BCG. Antigen-specific IFN-γ production has already been shown to peak one week post-MVA85A vaccination, and an inverse relationship between IL-17-producing cells and regulatory T cells expressing the ectonucleosidease CD39, which metabolises pro-inflammatory extracellular ATP has previously been described. This paper explores this relationship and finds that consumption of extracellular ATP by peripheral blood mononuclear cells from MVA85A-vaccinated subjects drops two weeks post-vaccination, corresponding to a drop in the percentage of a regulatory T cell subset expressing the ectonucleosidase CD39. Also at this time point, we report a peak in co-production of IL-17 and IFN-γ by CD4(+) T cells. These results suggest a relationship between extracellular ATP and effector responses and unveil a possible pathway that could be targeted during vaccine design.  相似文献   

6.
7.
Bacillus Calmette-Guerin (BCG) vaccine has failed to control the global tuberculosis (TB) epidemic, and there is a lack of safe and effective mucosal vaccines capable of potent protection against pulmonary TB. A recombinant replication-deficient adenoviral-based vaccine expressing an immunogenic Mycobacterium tuberculosis Ag Ag85A (AdAg85A) was engineered and evaluated for its potential to be used as a respiratory mucosal TB vaccine in a murine model of pulmonary TB. A single intranasal, but not i.m., immunization with AdAg85A provided potent protection against airway Mycobacterium tuberculosis challenge at an improved level over that by cutaneous BCG vaccination. Systemic priming with an Ag85A DNA vaccine and mucosal boosting with AdAg85A conferred a further enhanced immune protection which was remarkably better than BCG vaccination. Such superior protection triggered by AdAg85 mucosal immunization was correlated with much greater retention of Ag-specific T cells, particularly CD4 T cells, in the lung and was shown to be mediated by both CD4 and CD8 T cells. Thus, adenoviral TB vaccine represents a promising novel vaccine platform capable of potent mucosal immune protection against TB. Our study also lends strong evidence that respiratory mucosal vaccination is critically advantageous over systemic routes of vaccination against TB.  相似文献   

8.
Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin‐binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN‐γ and anti‐HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN‐γ but also IL‐17A production by HBHA‐specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB.  相似文献   

9.
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the most devastating bacterial diseases to affect humans. M. tuberculosis is a robust pathogen that has evolved the capacity to survive and grow inside macrophage phagosomes. A cocktail of antibiotics has long been successfully used against M. tuberculosis but is becoming less effective owing to the emergence of multidrug resistance. The only available preventive vaccine, using Mycobacterium bovis bacille Calmette-Guérin, is considered to be ineffective against adult pulmonary TB, the most prevalent form of the disease. Here, we review the potential use of biodegradable nanoparticle-based anti-TB drug delivery systems that have been shown to be more effective against M. tuberculosis in animal models than conventional antibiotic treatment regimens. This technology also has substantial potential for vaccination and other therapeutic strategies against TB and other infectious diseases.  相似文献   

10.
The tuberculosis (TB) vaccine strain Mycobacterium bovis BCG is unable to utilise alanine and this deficiency is thought to inhibit the growth of the vaccine in vivo and limit vaccine efficacy. In this report we demonstrate that L-alanine catabolism can be conferred on BCG by introduction of the gene encoding L-alanine dehydrogenase (Ald) of Mycobacterium tuberculosis. Restoration of Ald activity did not change the in vivo growth of BCG in macrophages or mice, and protection against aerosol M. tuberculosis infection was not altered by addition of ald to the BCG vaccine. These results demonstrate that the inability to utilise L-alanine is not a contributing factor to the attenuated phenotype of BCG and does not influence the protective efficacy of the vaccine against TB.  相似文献   

11.
Vaccinology is one of the most important cornerstones in modern medicine, providing better quality of life. The human immune system is composed of innate and adaptive immune processes that interplay when infection occurs. Innate immunity relies on pathogen-associated molecular patterns which are recognized by pathogen recognition receptors localized in antigen presenting cells. After antigen processing and presentation, CD4+ T cell polarization occurs, further leading to B cell and CD8+ activation and humoral and cell-mediated adaptive immune responses. Liposomes are being employed as vaccine technologies and their design is of importance to ensure proper immune responses. Physicochemical parameters like liposome size, charge, lamellarity and bilayer fluidity must be completely understood to ensure optimal vaccine stability and efficacy. Liposomal vaccines can be developed to target specific immune cell types for the induction of certain immune responses. In this review, we will present promising liposomal vaccine approaches for the treatment of important viral, bacterial, fungal and parasitic infections (including tuberculosis, TB). Cationic liposomes are the most studied liposome types due to their enhanced interaction with the negatively charged immune cells. Thus, a special section on the cationic lipid dimethyldioctadecylammonium and TB is also presented.  相似文献   

12.
Infectious diseases remain a major health and socioeconomic problem in many low-income countries, particularly in sub-Saharan Africa. For many years, the three most devastating diseases, HIV/AIDS, malaria, and tuberculosis (TB) have received most of the world's attention. However, in rural and impoverished urban areas, a number of infectious diseases remain neglected and cause massive suffering. It has been calculated that a group of 13 neglected infectious diseases affects over one billion people, corresponding to a sixth of the world's population. These diseases include infections with different types of worms and parasites, cholera, and sleeping sickness, and can cause significant mortality and severe disabilities in low-income countries. For most of these diseases, vaccines are either not available, poorly effective, or too expensive. Moreover, these neglected diseases often occur in individuals who are also affected by HIV/AIDS, malaria, or TB, making the problem even more serious and indicating that co-infections are the rule rather than the exception in many geographical areas. To address the importance of combating co-infections, scientists from 14 different countries in Africa and Europe met in Addis Ababa, Ethiopia, on September 9-11, 2007. The message coming from these scientists is that the only possibility for winning the fight against infections in low-income countries is by studying, in the most global way possible, the complex interaction between different infections and conditions of malnourishment. The new scientific and technical tools of the post-genomic era can allow us to reach this goal. However, a concomitant effort in improving education and social conditions will be needed to make the scientific findings effective.  相似文献   

13.
The use of liposomes as vaccine adjuvants has been investigated extensively over the last few decades. In particular, cationic liposomal adjuvants have drawn attention, with dimethyldioctadecylammonium (DDA) liposomes as a prominent candidate. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulators has arisen as a strategy in the development of novel adjuvant systems in recent years. One such adjuvant system is CAF01. In this review, we summarize the immunological properties making CAF01 a promising versatile adjuvant system, which was developed to mediate protection against tuberculosis (TB) but, in addition, has shown promising protective efficacy against other infectious diseases requiring different immunological profiles. Further, we describe the stabilization properties that make CAF01 suitable in vaccine formulation for the developing world, which in addition to vaccine efficacy, are important prerequisites for any novel TB vaccine to reach global implementation. The encouraging nonclinical data led to a preclinical vaccine toxicology study of the TB model vaccine, Ag85B-ESAT-6/CAF01, that concluded that CAF01 has a satisfactory safety profile to advance the vaccine into phase I clinical trials, which are scheduled to start in 2009.  相似文献   

14.
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major global health problem, despite the widespread use of the M. bovis Bacille Calmette-Guerin (BCG) vaccine and the availability of drug therapies. In recent years, the high incidence of coinfection of M. tuberculosis and HIV, as well as escalating problems associated with drug resistance, has raised ominous concerns with regard to TB control. Vaccination with BCG has not proven highly effective in controlling TB, and also has been associated with increasing concerns about the potential for the vaccine to cause disseminated mycobacterial infection in HIV infected hosts. Thus, the development of an efficacious and safe TB vaccine is generally viewed as a critical to achieving control of the ongoing global TB pandemic. In the current study, we have analyzed the vaccine efficacy of an attenuated M. tuberculosis strain that combines a mutation that enhances T cell priming (ΔsecA2) with a strongly attenuating lysine auxotrophy mutation (ΔlysA). The ΔsecA2 mutant was previously shown to be defective in the inhibition of apoptosis and markedly increased priming of antigen-specific CD8(+) T cells in vivo. Similarly, the ΔsecA2ΔlysA strain retained enhanced apoptosis and augmented CD8(+) T cell stimulatory effects, but with a noticeably improved safety profile in immunosuppressed mice. Thus, the M. tuberculosis ΔsecA2ΔlysA mutant represents a live attenuated TB vaccine strain with the potential to deliver increased protection and safety compared to standard BCG vaccination.  相似文献   

15.
随着对抗结核免疫机制的深入研究,新型结核疫苗的研发也更加理性和成熟。近期研究表明,CD4 T细胞多功能至关重要,人类CD8和γδT细胞也有抗结核免疫保护作用,是新型疫苗设计有潜力的T细胞靶点。系统的"组学"技术大规模筛选有可能发现更多强免疫原性的抗原。不同表达时期的多抗原组成的多价疫苗对不同感染时期的结核都有预防作用。针对潜伏感染或已经感染个体配合化学药物使用的新型治疗性疫苗,有望促进清除残留的结核分枝杆菌。  相似文献   

16.
结核病是由结核分枝杆菌感染引起的传染病,是危害人类健康的主要传染病之一。目前被广泛应用的卡介苗对于新生儿和儿童的严重播散性疾病有很好的保护效果,但对于成人活动性结核病的有效性,却存在很大的争议。近年来,人们一直努力研发新疫苗并且已经取得了一些成果。这些新型结核疫苗在临床测试中的结果是非常令人兴奋和鼓舞人心的。但是,我们仍需继续探索新型结核疫苗。  相似文献   

17.
结核病是公共卫生当前面临的重要问题。由于BCG预防效果不佳,研究和开发新型结核病疫苗显得必须且急迫。新型结核病疫苗的研究开发路径和观念也经历了变迁,当前主流的研发路径有重组BCG或重组结核菌、重组痘病毒或重组腺病毒载体疫苗、蛋白质亚单位或重组融合蛋白质亚单位疫苗三类,它们在疫苗效力前景,抗原选型、配方、剂型,免疫应答,疫苗生产,疫苗质量控制,临床前研究动物试验,临床试验和使用,对结核病公共卫生政策的影响等方面各有优劣。新型结核病疫苗的成功研发,还需要病原学、发病机制、免疫学和疫苗研发科学的进一步努力。  相似文献   

18.
TB subunit vaccines--putting the pieces together   总被引:1,自引:0,他引:1  
  相似文献   

19.
Approximately 2 million people die of tuberculosis (TB) each year. The current vaccine, Bacille Calmette-Guérin (BCG), albeit widely employed, does not protect against adult pulmonary disease, and new vaccines are urgently needed to reduce the incidence of TB worldwide. New insights into the cellular and molecular mechanisms that underlie the interactions between Mycobacterium tuberculosis and its host have been exploited to develop novel vaccine candidates that recently have entered clinical trials. This review provides a brief overview of different approaches toward a new vaccination strategy and summarizes major challenges for the next decade.  相似文献   

20.
Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG) confers highly variable protection against pulmonary disease. An effective vaccination regimen would be the most efficient way to control the epidemic. However, BCG does confer consistent and reliable protection against disseminated disease in childhood, and most TB vaccine strategies being developed incorporate BCG to retain this protection. Cellular immunity is necessary for protection against TB and all the new vaccines in development are focused on inducing a strong and durable cellular immune response. There are two main strategies being pursued in TB vaccine development. The first is to replace BCG with an improved whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenuated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article reviews the leading candidate vaccines in development and considers the current challenges in the field with regard to efficacy testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号