首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
We identified a 46-kDa ERK, whose kinetics of activation was similar to that of ERK1 and ERK2 in most cell lines and conditions, but showed higher fold activation in response to osmotic shock and epidermal growth factor treatments of Ras-transformed cells. We purified and cloned this novel ERK (ERK1b), which is an alternatively spliced form of ERK1 with a 26-amino acid insertion between residues 340 and 341 of ERK1. When expressed in COS7 cells, ERK1b exhibited kinetics of activation and kinase activity similar to those of ERK1. Unlike the uniform pattern of expression of ERK1 and ERK2, ERK1b was detected only in some of the tissues examined and seems to be abundant in the rat and human heart. Interestingly, in Ras-transformed Rat1 cells, there was a 7-fold higher expression of ERK1b, which was also more responsive than ERK1 and ERK2 to various extracellular treatments. Unlike ERK1 and ERK2, ERK1b failed to interact with MEK1 as judged from its nuclear localization in resting cells overexpressing ERK1b together with MEK1 or by lack of coimmunoprecipitation of the two proteins. Thus, ERK1b is a novel 46-kDa ERK isoform, which seems to be the major ERK isoform that responds to exogenous stimulation in Ras-transformed cells probably due to its differential regulation by MEK.  相似文献   

2.
Matrix metalloproteinases (MMPs) play an important role in the invasive behavior of a number of cancers including oral squamous cell cancer (OSCC), and increased expression of MMP-9 is correlated with invasive and metastatic OSCC. Because calcium is an important regulator of keratinocyte function, the effect of modulating extracellular calcium on MMP-9 expression in OSCC cell lines was evaluated. Increasing extracellular calcium induced a dose-dependent increase in MMP-9 expression in immortalized normal and premalignant oral keratinocytes, but not in two highly invasive OSCC cell lines. Differential activation of MAPK signaling was also induced by calcium. p38 MAPK activity was down-regulated, whereas ERK1/2 activity was enhanced. Pharmacologic inhibition of p38 MAPK activity or expression of a catalytically inactive mutant of the upstream kinase MAPK kinase 3 (MKK3) increased the calcium induced MMP-9 gene expression, demonstrating that p38 MAPK activity negatively regulated this process. Interestingly blocking p38 MAPK activity enhanced ERK1/2 phosphorylation, suggesting reciprocal regulation between the ERK1/2 and p38 MAPK pathways. Together these data support a model wherein calcium-induced MMP-9 expression is differentially regulated by the ERK1/2 and p38 MAPK pathways in oral keratinocytes, and the data suggest that a loss of this regulatory mechanism accompanies malignant transformation of the oral epithelium.  相似文献   

3.
We investigated the capacity of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] to protect human keratinocytes against the hazardous effects of ultraviolet B (UVB)-irradiation, recognized as the most important etiological factor in the development of skin cancer. Cytoprotective effects of 1,25(OH)(2)D(3) on UVB-irradiated keratinocytes were seen morphologically and quantified using a colorimetric survival assay. Moreover, 1,25(OH)(2)D(3) suppressed UVB-induced apoptotic cell death. An ELISA, detecting DNA-fragmentation, demonstrated that pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM for 24 h reduced UVB-stimulated apoptosis by 55-70%. This suppression required pharmacological concentrations 1,25(OH)(2)D(3) and a preincubation period of several hours. In addition, 1,25(OH)(2)D(3) also inhibited mitochondrial cytochrome c release (90%), a hallmark event of UVB-induced apoptosis. Furthermore, we demonstrated that 1,25(OH)(2)D(3) reduced two important mediators of the UV-response, namely, c-Jun-NH(2)-terminal kinase (JNK) activation and interleukin-6 (IL-6) production. As shown by Western blotting, pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM diminished UVB-stimulated JNK activation with more than 30%. 1,25(OH)(2)D(3) treatment (1 microM) reduced UVB-induced IL-6 mRNA expression and secretion with 75-90%. Taken together, these findings suggest the existence of a photoprotective effect of active vitamin D(3) and create new perspectives for the pharmacological use of active vitamin D compounds in the prevention of UVB-induced skin damage and carcinogenesis.  相似文献   

4.
Granulocyte colony-stimulating factor (G-CSF) plays a major role in the regulation of granulopoiesis. Treatment of cells with G-CSF has been shown to activate multiple signal transduction pathways. We show here that Erk5, a novel member of the MAPK family, and its specific upstream activator MEK5 were activated in response to incubation of cells with G-CSF. Different from other members of the MAPK family including Erk1/2, JNK, and p38, maximal activation of Erk5 by G-CSF required the C-terminal region of the G-CSF receptor. Genistein, a specific inhibitor of protein-tyrosine kinases, blocked G-CSF-induced Erk5 activation. In contrast, inhibition of protein kinase C activity increased G-CSF-mediated activation of Erk5 and MEK5, whereas stimulation of protein kinase C activity inhibited activation of the two kinases by G-CSF. The proliferation of BAF3 cells in response to G-CSF was inhibited by expression of a dominant-negative MEK5 but potentiated by expression of a constitutively active MEK5. Expression of the constitutively active MEK5 also increased the survival of BAF3 cells cultured in the absence of or in low concentrations of G-CSF. Together, these data implicate Erk5 as an important signaling component in the biological actions of G-CSF.  相似文献   

5.
Macrophages produce a large amount of PGE(2) during inflammation. This lipid mediator modulates various immune responses. PGE(2) acts on macrophages and inhibits production of cytokines such as TNF-alpha and IL-12. Membrane-bound glutathione-dependent PGE(2) synthase (mPGES) has been shown to be a terminal enzyme of the cyclooxygenase-2-mediated PGE(2) biosynthesis. Here we identified mPGES as a molecule that is induced by LPS in macrophages. The expression of mPGES was not induced by LPS in mice lacking Toll-like receptor 4 or MyD88. Furthermore, mice deficient in NF-IL6 showed neither induction of mPGES nor biosynthesis of PGE(2) in response to LPS, indicating that mPGES expression in response to LPS is regulated by a Toll-like receptor 4/MyD88/NF-IL6-dependent signaling pathway. We generated mPGES-deficient mice and investigated the role of mPGES in vivo. The mice showed no augmentation of the PGE(2) production in response to LPS. However, they were not impaired in the LPS-induced production of inflammatory cytokines and showed normal response to the LPS-induced shock. Thus, mPGES is critically involved in the biosynthesis of PGE(2) induced by LPS, but is dispensable for the modulation of inflammatory responses.  相似文献   

6.
The E7 oncoprotein of human papillomavirus type 16 promotes cell proliferation in the presence of antiproliferative signals. Mutagenesis of E7 has revealed that this activity requires three regions, conserved regions 1 and 2 and a C-terminal zinc finger. Binding to the retinoblastoma tumor repressor (Rb) through an LxCxE motif in conserved region 2 is necessary, but not sufficient, for E7 to induce proliferation. We tested the hypothesis that binding to Rb is not sufficient because conserved region 1 and/or the C terminus are required for E7 to functionally inactivate Rb and thus induce proliferation. One mechanism proposed for how E7 inactivates Rb is by blocking Rb-E2F binding. Either conserved region 1 or the C terminus was necessary, in combination with the LxCxE motif, for E7 to block Rb-E2F binding in vitro. While all full-length E7 proteins with mutations outside of the LxCxE motif inhibited Rb-E2F binding, some failed to abrogate cell cycle arrest, demonstrating that blocking Rb-E2F binding is not sufficient for abrogating antiproliferative signals. Another mechanism proposed for how E7 inactivates Rb is by promoting the destabilization of Rb protein. Mutations in conserved region 1 or the LxCxE motif prevented E7 from reducing the half-life of Rb. Though no specific C-terminal residues of E7 were essential for destabilizing Rb, a novel class of mutations that uncouple the destabilization of Rb from the deregulation of keratinocyte proliferation was discovered. Destabilization of Rb correlated with the abrogation of Rb-induced quiescence but was not sufficient for overriding DNA damage-induced cell cycle arrest or for increasing keratinocyte life span. Finally, the same regions of E7 required for destabilizing Rb were required for reducing p107 and p130 levels. Together, these results suggest that inactivation of all three Rb family members is not sufficient to deregulate keratinocyte cell cycle control.  相似文献   

7.
The significance of cyclooxygenase-2 (COX-2) expression in ovarian cancer has been discussed. In this study, we found increased expression of COX-1 mRNA and protein in three out of 10 ovarian cancer cell lines. Prostaglandin E 2 (PGE2) production was elevated in these three cell lines, but not in other seven cell lines. COX-2 protein was not detected in any of the cell lines. Cytosolic prostaglandin E synthase (cPGES) mRNA and protein were detected in all 10 cell lines. Membrane-associated PGES-1 (mPGES-1) was detected in some of the ovarian cell lines, but its presence did not correspond with PGE2 production. In contrast, mPGES-2 mRNA and protein were detected in all 10 cell lines. A nonselective COX inhibitor (indometacin) and a selective COX-1 inhibitor (SC-560) strongly inhibited PGE2 production by the three cell lines, while selective COX-2 inhibitors (NS-398 and rofecoxib) did not inhibit PGE2 production. In addition, increased expression of COX-1, not COX-2 protein was observed in the mass of ovarian cancer tissues from 22 patients when compared with that in normal tissue. These findings suggest that COX-1 might be a major enzyme regulating PGE2 production in ovarian cancer cells.  相似文献   

8.
There is increasing evidence suggesting that chondrocyte death may contribute to the progression of osteoarthritis (OA). This study focused on the characterization of signaling cascade during NO-induced cell death in human OA chondrocytes. The NO generator, sodium nitroprusside (SNP), promoted chondrocyte death in association with DNA fragmentation, caspase-3 activation, and down-regulation of Bcl-2. Both caspase-3 inhibitor Z-Asp(OCH3)-Glu(OCH3)-Val-Asp(OCH3)-CH2F and caspase-9 inhibitor Z-Leu-Glu(OCH3)-His-Asp(OCH3)-CH2F prevented the chondrocyte death. Blocking the mitogen-activated protein kinase pathway by the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or p38 kinase inhibitor SB202190 also inhibited the SNP-mediated cell death, suggesting possible requirements of both extracellular signal-related protein kinase 1/2 and p38 kinase for the NO-induced cell death. Furthermore, the selective inhibition of cyclooxygenase (COX)-2 by NS-398 or the inhibition of COX-1/COX-2 by indomethacin blocked the SNP-induced cell death. The chondrocyte death induced by SNP was associated with an overexpression of COX-2 protein (as determined by Western blotting) and an increase in PGE2 release. PD98059 and SB202190, but neither Z-DEVD FMK nor Z-LEHD FMK completely inhibited the SNP-mediated PGE2 production. Analysis of interactions between PGE2 and the cell death showed that PGE2 enhanced the SNP-mediated cell death, whereas PGE2 alone did not induce the chondrocyte death. These data indicate that NO-induced chondrocyte death signaling includes PGE2 production via COX-2 induction and suggest that both extracellular signal-related protein kinase 1/2 and p38 kinase pathways are upstream signaling of the PGE2 production. The results also demonstrate that exogenous PGE2 may sensitize human OA chondrocytes to the cell death induced by NO.  相似文献   

9.
An aqueous acetone extract obtained from the pericarps of Mallotus japonicus (MJE) was observed to inhibit prostaglandin (PG) E2 production in a lipopolysaccharide (LPS)-activated murine macrophage-like cell line, RAW 264.7. Six phloroglucinol derivatives isolated from MJE exhibited inhibitory activity against PGE2 production. Among these phloroglucinol derivatives, isomallotochromanol showed the strongest inhibitory activity, with an IC50 of 1.0 μM. MJE and its phloroglucinol derivatives did not effect the enzyme activity of either prostaglandin endoperoxide synthase (PGHS)-1 or PGHS-2. However, induction of PGHS-2 in LPS-activated macrophages was inhibited by MJE and its phloroglucinol derivatives, whereas the level of PGHS-1 protein was not affected. Moreover, RT-PCR analysis showed that MJE and its phloroglucinol derivatives significantly suppressed PGHS-2 mRNA expression. Therefore, the observed inhibition of PGHS-2 induction by MJE and its phloroglucinol derivatives was likely due to a suppression of PGHS-2 mRNA expression. These results suggest that MJE and its phloroglucinol derivatives have the pharmacological ability to suppress PGE2 production by activated macrophages.  相似文献   

10.
An aqueous acetone extract obtained from the pericarps of Mallotus japonicus (MJE) was observed to inhibit prostaglandin (PG) E(2) production in a lipopolysaccharide (LPS)-activated murine macrophage-like cell line, RAW 264.7. Six phloroglucinol derivatives isolated from MJE exhibited inhibitory activity against PGE(2) production. Among these phloroglucinol derivatives, isomallotochromanol showed the strongest inhibitory activity, with an IC(50) of 1.0 microM. MJE and its phloroglucinol derivatives did not effect the enzyme activity of either prostaglandin endoperoxide synthase (PGHS)-1 or PGHS-2. However, induction of PGHS-2 in LPS-activated macrophages was inhibited by MJE and its phloroglucinol derivatives, whereas the level of PGHS-1 protein was not affected. Moreover, RT-PCR analysis showed that MJE and its phloroglucinol derivatives significantly suppressed PGHS-2 mRNA expression. Therefore, the observed inhibition of PGHS-2 induction by MJE and its phloroglucinol derivatives was likely due to a suppression of PGHS-2 mRNA expression. These results suggest that MJE and its phloroglucinol derivatives have the pharmacological ability to suppress PGE(2) production by activated macrophages.  相似文献   

11.
12.
《Phytomedicine》2015,22(9):796-806
BackgroundGastric cancer is the second leading cause of cancer related deaths after lung cancer globally. Among natural products, natural triterpenes represent a structurally diverse group of organic compounds with potent antitumor activity.PurposeThe objective of the present research work demonstrated the antiproliferative and apoptotic activity of rosamultic acid, a natural triterpenoid, in human gastric cancer (SGC-7901) cells. Its effect on cellular morphology, cell cycle arrest, DNA fragmentation and expression levels of caspase-3, caspase-8 and caspase-9 were also determined.MethodsAntiproliferative activity of rosamultic acid was evaluated by MTT assay. Phase contrast, fluorescence microscopy as well as flow cytometry using Hoechst 33342, acridine orange/ethidium bromide and Annexin V-FITC as cellular probes were used to evaluate the induction of apoptosis by rosamultic acid. Protein level expressions were analyzed by western blot analysis.ResultsThe results revealed that rosamultic acid induced dose-dependent as well as time dependent cytotoxic effects in SGC-7901 gastric cancer cells. It also led to a reduction in clonogenic activity along with inhibiting the cell migration. Characteristic features of apoptosis induced by rosamultic acid were observed and quantified. Cell cycle arrest at sub-G1 phase was induced by rosamultic acid along with downregulation of expression levels of CDK4, CDK6 and cyclin D1. Rosamultic acid also significantly led to the activation of caspase-3, -8 and -9 during the 48 h treatment along with cleaving PARP in a dose-dependent manner. DNA fragmentation following rosamultic acid treatment was also observed in these cells.ConclusionThe current study strongly reveals that rosamultic acid inhibits gastric cancer proliferation by inducing apoptosis mediated through cell cycle arrest, downregulation of cell cycle related protein expressions, inhibition of cell migration, DNA damage, and activation of caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号