首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scant knowledge is available about the dynamics of lineage-specific mixed chimerism (Ch) following bone marrow transplantation (BMT). This review is focused on findings derived from bone marrow (BM) biopsies in patients with chronic myeloid leukemia (CML) including a sex-mismatched host/donor constellation. Appropriate techniques involved immunophenotyping by monoclonal antibodies to identify the various cell lineages, dual color fluorescence in situ hybridization (FISH) with x- and y-chromosome-specific DNA-probes and a proper detection system for a simultaneous labeling of the bcr/abl locus. A significant degree of Ch with more than 20% host CD34+ progenitors was found in the early and late (up to 200 days after BMT) posttransplant period. However, only 10% of these cells harbored the bcr/abl translocation gene. This result fits well with corresponding molecular biological findings of so-called minimal residual disease. Conversion of Ch evolved during leukemic relapse with 90% host progenitors of which 50% revealed the bcr/abl locus. A Ch of nucleated erythroid percursors (5%) and CD68+ macrophages (8%) was expressed to a significantly lower degree. The slightly increased frequency found in CD61+ megakaryocytes (16%) was probably due to the polyploid state of these cells. Similar to the CD34+ progenitor cells abrupt changes from donor to host type was associated with an insidious transformation into recurrent leukemia. The CD34+ endothelial cells showed a minor degree of Ch, because donor-derived elements ranged from 18% to 25%. Leukemic relapse was characterized by an almost complete conversion of the endothelial cells to a host type. These findings point towards a CD34+ progenitor cell origin of the (leukemic) endothelial cell layer and suggests that their dysfunction may contribute to an expansion of the neoplastic clone.  相似文献   

2.
Persuasive evidence has been recently provided that adult bone marrow (BM) cells exert greater plasticity than previously assumed. This review is focused on the quantification of mixed chimerism (mCh) in the hearts (cardiomyocytes and endothelial cells) of patients after orthotopic heart to heart transplantation (HHT) in comparison to full (unmanipulated) allogeneic BM and peripheral blood stem cell (PBSC) transplants. Following a sex-mismatched transplantation constellation heart muscle tissue obtained at autopsy was examined. Evaluation of mCh was most often performed by immunophenotyping combined with fluorescence in-situ hybridization (FISH) applying x- and y-chromosome-specific DNA probes. When comparing our data with the results of former studies that were regularly based on the detection of the y-chromosome alone, the quantity of chimeric cardiomyocytes after HHT ranged from 0% to 9%. On the other hand, after full BM transplantats (chimeric) cardiomyocytes of donor-type origin appeared at an incidence between 0.23% to 6.4%. These disturbing inconsistencies were assumed to be related to methodology: the restriction to the y-chromosome, disregard of the plane of section (detection sensitivity ranging between 35% and 67%) and state of tissue preservation (cadaver hearts). Therefore, when strictly applying dual color FISH and limiting the recognition of chimeric cardiomyocytes and endothelial cells to the presence of two distinctive signals detection sensitivity was significantly enhanced. Contrasting a total congruence with the genotyping in control specimens of normal cadaver hearts, a striking disparity in the extent of mCh was found depending on the different modes of transplantation. After allografting with PBSC a considerably low incidence (1.6%) of chimeric cardiomyocytes was determined contrasting with 5.3% of donor-derived cells after full BM transplants. Following HHT host-type endothelial cells (16.2%) of the intramural and subepicardial vessel walls were more often encountered than following BM and PBSC allografting. These findings are in keeping with the assumption of a sprouting and migration of vascular structures into the donor heart from the site of surgical aligment and injury between retained host and donor atrial walls. When considering the other methods of transplantation (BM, PBSC) the data on chimeric endothelial cells support the hypothesis of a common hemangioblast. Concerning the cardiomyocytes it seems most reasonable to assume that primitive mesenchymal stem cells of the BM play a pivotal role in the development of mCh. This phenomenon is more extensively expressed than previously expected and may be related to an enforced repair of the damaged myocardium during the post-transplant period as the sequel of myeloablative (cardiotoxic) conditioning.  相似文献   

3.
Scant knowledge exists concerning lineage-restricted mixed chimerism (mCh) after allogeneic peripheral blood stem cell transplantation (PSCT) in patients with chronic idiopathic myelofibrosis (CIMF). Following a sex-mismatched PSCT, a combined immunopheno- and genotyping by fluorescence in-situ hybridization (FISH) was performed on sequential bone marrow (BM) biopsies at standardized intervals. Results were compared with PCR analysis of corresponding peripheral blood samples in five patients. According to FISH, pretransplant specimens revealed a gender congruence of more than 99%, while in the first three months the total BM exhibited a persistent fraction of host cells (30% to 40%) with a tendency to decline after about one year. It is noteworthy that the majority of endothelial cells maintained a recipient origin, whereas CD34+ progenitors and especially CD61+ megakaryocytes exhibited only very few host-derived cells. In keeping with the prevalence of donor cells in the hematopoietic compartment, PCR analysis of peripheral blood cells displayed a non-significant degree of mCh. In conclusion, according to FISH and PCR analysis, successful PSCT in CIMF results in an almost complete chimeric (donor-derived) state of the hematopoietic cell population. The non-transplantable stromal compartment includes the vascular endothelium with a predominance of recipient cells. The minimal mCh of this population implies probably a donor-derived origin (endothelial progenitor cells).  相似文献   

4.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

5.
Systemic chimerism, or the movement of cells from a transplanted tissue into host organs, is a phenomenon known to occur in association with development of immunological tolerance in allotransplantation. However, little is known about the fate and movement of cells into or out of autogenous free tissue transfers, including vascularized bone grafts. The purpose of this study was to identify systemic chimerism in vascularized bone grafts by transplantation of a vascularized tibiofibular graft from isogenous (inbred) male Lewis rats to female recipients. Donor (male) cells could be identified in the recipient (female) tissues by semiquantitative polymerase chain reaction analysis for a Y chromosome-specific DNA sequence. Chimerism was assessed at 1, 12, 18, and 24 weeks after transplantation. Competitive polymerase chain reaction study using the specific primers for a Y-chromosome marker ( gene) and an autosomal gene (GAPDH) allowed detection of small amounts of male cells in a large pool of female cells and measurement of their relative proportions as a function of time. Of 19 nonimmunosuppressed recipients, nine animals (47 percent) showed low-level chimerism (<0.1 percent) in the peripheral blood. Nine (47 percent), three (16 percent), and two (11 percent) recipients showed high-level chimerism (>1 percent) in the spleen, liver, and thymus, respectively, at final assessment. Donor cells were detected in all bone grafts and in six contralateral tibial bones (i.e., 67 percent of sampled contralateral tibial bones) at 18 and 24 weeks after transplantation. Twenty-four recipients were immunosuppressed with FK506 (tacrolimus) to suppress reaction to a minor histocompatibility barrier present on the Y chromosome. In this group, 14 animals (58 percent) showed low-level chimerism in peripheral blood and 12 (50 percent), eight (33 percent), and one (4 percent) recipients showed high-level chimerism in the spleen, thymus, and liver, respectively. Transplanted cells were detected in nine contralateral tibial bones (i.e., 60 percent of sampled contralateral tibial bones) at 12 and 18 weeks after surgery. The results indicate that polymerase chain reaction for the Y chromosome is a useful tool for differentiating between donor and recipient cell populations experimentally using sex-mismatched tissues in a rat model. This study demonstrated that systemic chimerism occurs after successful vascularized bone transplantation. Transplanted cells not only survive in the graft but also gradually migrate into the recipient's body.  相似文献   

6.
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.  相似文献   

7.
The value of Y-body study for assessment of stromal cell engraftment was analyzed in 25 patients submitted to allogeneic bone marrow transplantation (BMT) (sex-matched in 12 cases and sex-mismatched in 13). The study was performed weekly on bone marrow smears until day +35, and the results were compared with those obtained in a control group of 20 patients submitted to autologous BMT (12 males and 8 females). Engraftment of haemopoietic cells was documented in all cases. The results of Y-body study on the recipients' fibroblast cells showed a pattern identical to that observed prior to BMT, independent of donor's sex. On the other hand, there were no differences between allogeneic and autologous BMT recipients in regard to percentage of Y-body positive cells. These results indicate that in allogeneic BMT there is no engraftment of the fibroblastic component of bone marrow stroma.  相似文献   

8.
Chimerism is an exceptional immunogenetic state, characterized by the survival and collaboration of cell populations originated from two different individuals. The prerequisites to induce chimerism are immunosuppression, myeloablation or severe immunodeficiency of the recipients on one side and donor originated immuno-hematopoietic cells in the graft on the other. Special immunogenetic conditions to establish chimerism are combined with bone marrow transplantation, transfusion and various kinds of solid organ grafting. There are various methods to detect the type of chimera state depending on the immunogenetic differences between the donor and recipient. The chimera state seems to be one of the leading factors to influence the course of the post-transplant period, the frequency and severity of graft-versus-host disease (GVHD), and the rate of relapse. However, the most important contribution of the chimeric state is the development of graft versus leukemia (GVL) effect. A new conditioning protocol (DBM/Ara-C/Cy) for allogeneic BMT in CML patients and its consequence on chimera state and GVL effect is demonstrated.  相似文献   

9.
Total lymphoid irradiation (TLI), originally developed as a non-myeloablative treatment for Hodgkin's disease, has been adapted for the induction of immune tolerance to organ allografts in rodents, dogs and non-human primates. Moreover, pretransplantation TLI has been used in prospective studies to demonstrate the feasibility of the induction of tolerance to cadaveric kidney allografts in humans. Two types of tolerance, chimeric and non-chimeric, develop after TLI treatment of hosts depending on whether donor bone marrow cells are transplanted along with the organ allograft. An advantageous feature of TLI for combined marrow and organ transplantation is the protection against graft-versus-host disease (GVHD) and facilitation of chimerism afforded by the predominance of CD4+ NK1.1(+) -like T cells in the irradiated host lymphoid tissues. Recently, a completely post-transplantation TLI regimen has been developed resulting in stable mixed chimerism and tolerance that is enhanced by a brief course of cyclosporine. The post-transplantation protocol is suitable for clinical cadaveric kidney transplantation. This review summarizes the evolution of TLI protocols for eventual application to human clinical transplantation and discusses the mechanisms involved in the induction of mixed chimerism and protection from GVHD.  相似文献   

10.
Hematopoietic chimerism is considered to generate robust allogeneic tolerance; however, tissue rejection by chimeras can occur. This "split tolerance" can result from immunity toward tissue-specific Ags not expressed by hematopoietic cells. Known to occur in chimeric recipients of skin grafts, it has not often been reported for other donor tissues. Because chimerism is viewed as a potential approach to induce islet transplantation tolerance, we generated mixed bone marrow chimerism in the tolerance-resistant NOD mouse and tested for split tolerance. An unusual multilevel split tolerance developed in NOD chimeras, but not chimeric B6 controls. NOD chimeras demonstrated persistent T cell chimerism but rejected other donor hematopoietic cells, including B cells. NOD chimeras also showed partial donor alloreactivity. Furthermore, NOD chimeras were split tolerant to donor skin transplants and even donor islet transplants, unlike control B6 chimeras. Surprisingly, islet rejection was not a result of autoimmunity, since NOD chimeras did not reject syngeneic islets. Split tolerance was linked to non-MHC genes of the NOD genetic background and was manifested recessively in F(1) studies. Also, NOD chimeras but not B6 chimeras could generate serum alloantibodies, although at greatly reduced levels compared with nonchimeric controls. Surprisingly, the alloantibody response was sufficiently cross-reactive that chimerism-induced humoral tolerance extended to third-party cells. These data identify split tolerance, generated by a tolerance-resistant genetic background, as an important new limitation to the chimerism approach. In contrast, the possibility of humoral tolerance to multiple donors is potentially beneficial.  相似文献   

11.
Although numerous genetic markers are available for studying chimerism after bone marrow transplantation (BMT), there remains a need for a practical and highly informative method that is applicable in the early posttransplantation period. Using DNA restriction-fragment-length polymorphisms (RFLPs), we have evaluated the feasibility of developing a single synthetic oligonucleotide probe to study post-BMT chimerism. We have thus tested three candidate probes, termed O-3315-32, O-3315-80, and O-AY-29, that are homologous to tandemly repetitive sequences. Our results demonstrated donor-specific and recipient-specific fragments in 11 of 11 HLA-matched sibling pairs tested using probes O-3315-32 and O-3315-80. When probe O-AY-29 was used, 14 of 17 sibling pairs showed both donor and recipient markers, one had only a recipient marker, and two were identical. We showed that each of the three synthetic probes was effective in documenting donor marrow engraftment, mixed hematopoietic chimerism, the patient's pre-BMT phenotype (by using cultured skin fibroblasts obtained after BMT), and the origin of the malignant hematopoietic cells (i.e., of donor or recipient origin) in patients who developed recurrent hematologic malignancy following BMT. Compared with the use of cloned genomic probes, there are several important advantages to the use of synthetic oligonucleotide probes in studying post-BMT chimerism. Synthetic probes have absolute hybridization specificity and can be designed to suit the purposes of an individual study, since they have adjustable specificity that can be altered by changes in the length of the probe and by changes in the hybridization temperature. A single synthetic probe analogous to several highly polymorphic loci can have a polymorphism information content sufficiently high so that all but a small percentage of BMT patients could be followed easily; for example, if a probe were complementary to three highly polymorphic unlinked loci, it would discriminate approximately 98% of sibling donor/recipient pairs. This would be accomplished using only one restriction-endonuclease digestion and only one gel electrophoresis. Since other genetic markers, e.g., red blood cell antigens, immunoglobulin allotypes, and chromosome analysis, are not uniformly informative and, in some cases, cannot be used in the early posttransplantation period, the use of synthetic oligonucleotide probes for analysis of DNA RFLP is emerging as the method of choice for studies of post-BMT chimerism. This method will allow for the development of new knowledge that has not been possible with previous methods.  相似文献   

12.
T cell activation in response to allogeneic stimulation and hapten-specific delayed-contact hypersensitivity responses in vivo can be initiated by Ia-bearing epidermal Langerhans cells (LC). By using a murine heterotopic corneal allograft model, we have investigated the requirement for allogeneic LC as antigen-presenting cells (APC) in the in vivo induction of delayed-type hypersensitivity (DTH) and cytolytic T lymphocyte (CTL) responses to alloantigens in fully allogeneic and H-2 I region-disparate strain combinations. LC-deficient, avascular central corneal allografts from BALB/c donors failed to induce DTH responsiveness when grafted to a subdermal bed on C57BL/6 recipients (p greater than 0.05), yet antigen-specific primary CTL reactivity developed within 7 days after grafting. LC-containing corneal-limbus allografts or central corneal allografts containing a latex bead-induced infiltrate of LC resulted in intense DTH as well as CTL responsiveness when grafted in this same strain combination. Similarly, LC-containing but not LC-deficient corneal allografts from A.TL donors induced DTH responsiveness in I region-disparate A.TH hosts despite the fact that these grafts survived for prolonged duration (less than 28 days). By contrast, CTL induction in I region-disparate hosts was independent of the presence of allogeneic LC. Corneal epithelial cells of grafts removed from I region-disparate hosts 7 days posttransplantation were shown by immunohistology to express the Iak antigens of donor origin. The possibility that bone marrow-derived allogeneic LC were a sufficient requirement for DTH induction was confirmed in experiments performed with CB6F1----B6 bone marrow chimeras used as corneal allograft donors. Corneal-limbus grafts obtained from mice 90 days after chimerization were shown by immunohistology to contain Iad-bearing CB6F1 LC as a sole source of class II alloantigens. When grafted to C57BL/6 recipients, LC-containing chimeric corneas induced DTH responsiveness that was similar in magnitude to that observed in C57BL/6 mice grafted with chimeric skin, yet no DTH response to LC-deficient chimeric central corneal grafts was observed. Moreover, in all cases, the chimeric corneal and skin allografts survived for prolonged duration (greater than 28 days). These results demonstrate that donor-derived LC act as APC in the induction of DTH responsiveness to allogeneic tissue; however, there was no apparent requirement for allogeneic LC in the induction of CTL responses to class I or class II MHC alloantigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Donor hemopoietic cell engraftment is considered to be an indicator of allograft tolerance. We depleted chimerism with cells specifically presensitized to the bone marrow donor to investigate its role in mixed chimera-induced tolerance. Three experimental models were used: model A, B10.A cells presensitized to B6 (a anti-b cells) were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; model B, anti-B6 presensitized cells prepared in DBA/2 --> B10.A mixed chimeras, thus unresponsive to DBA/2 (a anti-b/tol-d cells), were injected into (B6 x D2)F(1) --> B10.A mixed chimeras grafted with DBA/2 skin; and model C, (BALB/c x B6)F(1) cells presensitized to CBA (d/b anti-k cells) were injected into (B6 x CBA)F(1) --> BALB/c mixed chimeras grafted with B6 skin. Skin was grafted on day 30. Injection of each cell type before skin grafting abolished hemopoietic cell engraftment and prevented allograft acceptance. Injection of presensitized cells after skin grafting resulted in different outcomes depending on the models. In model A, injection of a anti-b cells completely depleted chimerism and caused allograft rejection. In model B, injection of a anti-b/tol-d cells markedly reduced, but did not deplete, peripheral chimerism and maintained skin allograft survival. In model C, d/b anti-k cells reduced chimerism to the background levels but failed to cause graft rejection, probably due to persistence of injected cells which share MHC with skin grafts. Together, the results show that presence of chimeric donor cells is essential in both the induction and maintenance phases of tolerance induced by mixed chimerism.  相似文献   

14.
Male BXSB mice, a mouse model of systemic lupus erythematosus, were given bone marrow transplants (BMT) at 20 wk of age using MHC-matched donor cells and nonmyeloablative conditioning (550 cGy irradiation). Transplanted mice and irradiation controls were followed for a period of 20 wk. Mice transgenic for green fluorescent protein were used as donors to allow tracking of donor cells and a determination of chimerism. Radiation controls had reduced renal pathology at 10 wk posttransplant, but not at 20 wk compared with untreated mice, while nonmyeloablative BMT mice had significantly reduced pathology at both time intervals. The monocytosis characteristic of older BXSB mice was also reduced by BMT, but the treatment did not prevent production of Ab to dsDNA. A stable chimerism of 24-40% donor CD45-positive cells was achieved in spleen and bone marrow, and there was no evidence of clinical graft vs host disease. Donor cells were detected in most recipient organs, notably the thymus and renal glomeruli. The results suggest that complete depletion of mature lymphocytes or of progenitor stem cells is not required to control lupus nephritis in BXSB mice.  相似文献   

15.
Mechanisms of cyclophosphamide (CP)-induced tolerance were studied. When AKR/J Sea (AKR: H-2k) mice were primed i.v. with 5 x 10(7) spleen cells plus 1 x 10(7) bone marrow cells from [C57BL/6 Slc (B6; H-2b) x C3H/He Slc (C3H; H-2k)]F1 (B6C3F1) mice and treated i.p. with 200 mg/kg CP 2 days later, the survival of C3H skin was moderately prolonged, but the survival of either B6 or B6C3F1 skin was not prolonged. By this treatment, however, mixed chimerism of B6C3F1 cells in the AKR mice was not established. When C3H cells were used as the tolerogen, a minimal degree of mixed chimerism associated with profound tolerance to C3H skin was established. Similar results were observed in various donor-recipient combinations. When C3H skin was grafted in the AKR mice 12 wk after the treatment with C3H cells and CP, or B6C3F1 cells and CP, survival of the grafted C3H skin was prolonged remarkably or moderately, respectively, although mixed chimerism was not detectable at the timing of grafting in either of the groups. In this late stage of tolerance, a strong level of tolerogen-specific suppressor cell activity was observed in those tolerant AKR mice. The suppressor activity was mainly attributable to T cells. These results suggest that the role of Ts cells in order to maintain skin tolerance is important in our CP-induced tolerance system, especially in the late stage of tolerance. Moreover, the generation of the Ts cells does not necessarily require the establishment of a long term mixed chimeric state.  相似文献   

16.
Teplitz  R. L.  Moon  Y. S.  Basrur  P. K. 《Chromosoma》1967,22(2):202-209
This study was designed to determine whether chimerism in heterosexual twin cattle could be detected in spleen and bone marrow and whether chimeric germ cells could survive into maturity and undergo meiosis. Differential erythrocyte typing and cytogenetic technics were employed. Somatic cell chimerism was usually equal in the various tissues examined. Germ cell chimerism was always low. Meiosis of XX germ cells in testis was detected through diakinesis. Lower ratios for germ cells than for somatic cells were obtained probably because they are mobile only for a short period of time in embryogeny, when they travel from yolk sac to gonadal primordia.  相似文献   

17.
Chromosome studies were performed in 24 patients who underwent allogeneic bone marrow transplantation (BMT) for severe aplastic anaemia (8), chronic myeloid leukemia (5 in chronic, 2 in accelerated phase and 1 in lymphoid blast crisis), acute myeloid leukemia (6), acute lymphoblastic leukemia in relapse (1) and Hodgkin's disease (1). Donor-cell type engraftment was demonstrated in 21 patients: in all 17 sex-mismatched transplants and - as demonstrated by reconstitution with Ph-negative cell populations - in 4 CML patients with a sex-matched donor. Recipient-type mitoses were seen in the bone marrow of 5 cases (1 SAA, 3 CML, 1 AML) after transplantation. They were only observed on one occasion in patients with SAA (4 of 25 on day 33) and AML (44 of 50 on day 14). Despite the continued demonstration of some Ph-positive mitoses in 3 patients with CML up to day 28, 323 and 451 after BMT, respectively, all surviving CML patients are still in complete haematological and clinical remission. So far the significance of these cytogenetically abnormal persisting host cells remains unknown.  相似文献   

18.
Solid organ transplants contain small numbers of leukocytes that can migrate into the host and establish long-lasting microchimerism. Although such microchimerism is often associated with graft acceptance and tolerance, it has been difficult to demonstrate a true causal link. Using skin from mutant mice deficient for leukocyte subsets, we found that donor T-cell chimerism is a 'double-edged sword' that can result in very different outcomes depending on the host's immunological maturity and the antigenic disparities involved. In immunologically mature hosts, chimerism resulted in immunity and stronger graft rejection. In immature hosts, it resulted in tolerance to the chimeric T cells, but not to graft antigens not expressed by the chimeric cells. Clinical efforts aimed at augmenting chimerism to induce tolerance must take into account the maturation state of host T cells, the type of chimerism produced by each organ and the antigenic disparities involved, lest the result be increased rejection rather than tolerance.  相似文献   

19.
The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.  相似文献   

20.
Nonmyeloablative conditioning has significantly reduced the morbidity associated with bone marrow transplantation. The donor hemopoietic cell lineage(s) responsible for the induction and maintenance of tolerance in nonmyeloablatively conditioned recipients is not defined. In the present studies we evaluated which hemopoietic stem cell-derived components are critical to the induction of tolerance in a total body irradiation-based model. Recipient B10 mice were pretreated with mAbs and transplanted with allogeneic B10.BR bone marrow after conditioning with 100-300 cGy total body irradiation. The proportion of recipients engrafting increased in a dose-dependent fashion. All chimeric recipients exhibited multilineage donor cell production. However, induction of tolerance correlated strictly with early production of donor T cells. The chimeras without donor T cells rejected donor skin grafts and demonstrated strong antidonor reactivity in vitro, while possessing high levels of donor chimerism. These animals lost chimerism within 8 mo. Differentiation into T cells was aborted at a prethymic stage in recipients that did not produce donor T cells. Moreover, donor Ag-driven clonal deletion of recipient T cells occurred only in chimeras with donor T cells. These results demonstrate that donor T cell production is critical in the induction of transplantation tolerance and the maintenance of durable chimerism. In addition, donor T cell production directly correlates with the deletion of potentially alloreactive cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号