共查询到20条相似文献,搜索用时 0 毫秒
1.
Proctor David N.; Shen Peter H.; Dietz Niki M.; Eickhoff Tamara J.; Lawler Lori A.; Ebersold Ethan J.; Loeffler Darrell L.; Joyner Michael J. 《Journal of applied physiology》1998,85(1):68-75
It is currentlyunclear whether aging alters the perfusion of active muscles duringlarge-muscle dynamic exercise in humans. To study this issue, directmeasurements of leg blood flow (femoral vein thermodilution) andsystemic arterial pressure during submaximal cycle ergometry (70, 140, and 210 W) were compared between six younger (Y; 22-30 yr) and sixolder (O; 55-68 yr) chronically endurance-trainedmen. Whole body O2uptake, ventilation, and arterial and femoral venous samples forblood-gas, catecholamine, and lactate determinations were alsoobtained. Training duration (min/day), estimated leg muscle mass(dual-energy X-ray absorptiometry; Y, 21.5 ± 1.2 vs. O, 19.9 ± 0.9 kg), and blood hemoglobin concentration (Y, 14.9 ± 0.4 vs. O, 14.7 ± 0.2 g/dl) did not significantly differ (P > 0.05) between groups. Leg bloodflow, leg vascular conductance, and femoral venousO2 saturation were ~20-30%lower in the older men at each work rate (allP < 0.05), despite similarlevels of whole body O2 uptake. At210 W, leg norepinephrine spillover rates and femoral venous lactateconcentrations were more than twofold higher in the older men.Pulmonary ventilation was also higher in the older men at 140 (+24%)and 210 (+39%) W. These results indicate that leg blood flow andvascular conductance during cycle ergometer exercise are significantlylower in older endurance-trained men in comparison to their youngercounterparts. The mechanisms responsible for this phenomenon and theextent to which they operate in other groups of older subjects deservefurther attention. 相似文献
2.
A recent study showed good correlation between regional blood flow (BF) and oxygen uptake (Vo(2)) 30 min after exhaustive exercise. The question that remains open is whether there is similar good correlation between BF and Vo(2) also during exercise. We reanalyzed our previous data from a study in which BF and Vo(2) was measured in different quadriceps femoris muscles in seven healthy endurance-trained and seven healthy untrained men at rest and during low-intensity intermittent static knee-extension exercise (Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, and Nuutila P. Am J Physiol Endocrinol Metab 280: E1015-E1021, 2001). When the mean values of each muscle were considered, there was good correlation between BF and Vo(2) during exercise in both groups (r(2) = 0.82 in untrained and 0.97 in trained). However, when calculated individually, the correlations were poorer, and the mean correlation coefficient (r(2)) was significantly higher in the trained men (0.71 +/- 0.07 vs. 0.40 +/- 0.11, P = 0.03). These results suggest that there is large individual variation in matching BF to Vo(2) in human skeletal muscles during exercise, ranging from very poor to excellent. Furthermore, this matching seems to be better in the endurance-trained than in untrained men. 相似文献
3.
Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects 总被引:4,自引:0,他引:4
Jeukendrup A. E.; Mensink M.; Saris W. H.M.; Wagenmakers A. J.M. 《Journal of applied physiology》1997,82(3):835-840
Jeukendrup, A. E., M. Mensink, W. H. M. Saris, and A. J. M. Wagenmakers. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl.Physiol. 82(3): 835-840, 1997.To investigate theeffect of training status on the fuel mixture used during exercise withglucose ingestion, seven endurance-trained cyclists (Tr; maximumO2 uptake 67 ± 2.3 ml · kg1 · min1)and eight untrained subjects (UTr; 48 ± 2 ml · kg1 · min1)were studied during 120 min of exercise at ~60% maximumO2 uptake. At the onset of exercise, 8 ml · kg1 · min1of an 8% naturally enriched[13C]glucose solutionwas ingested and 2 ml/kg every 15 min thereafter. Energy expenditurewas higher in Tr subjects compared with UTr subjects (3,404 vs. 2,630 kJ; P < 0.01). During the secondhour, fat oxidation was higher in Tr subjects (37 ± 2 g) comparedwith UTr subjects (23 ± 1 g), whereas carbohydrateoxidation was similar (116 ± 8 g in Tr subjects vs. 114 ± 4 g in UTr subjects). No differences were observed in exogenousglucose oxidation (50 ± 2 g in Tr subjects and 45 ± 3 g in UTr subjects, respectively). Peak exogenous glucose oxidationrates were similar in the two groups (0.95 ± 0.07 g/min in Trsubjects and 0.96 ± 0.03 g/min in UTr subjects). It is concluded that the higher energy expenditure in Tr subjects during exercise atthe same relative exercise intensity is entirely met by a higher rateof fat oxidation without changes in the rates of exogenous andendogenous carbohydrates. 相似文献
4.
5.
This study compared the lung volumes and pulmonary functions of older endurance-trained athletes with those of healthy sedentary age-matched controls, young athletes, and young untrained men to determine whether training affects the age-associated changes in these variables. Despite large differences in maximal 02 consumption (VO2max), the older athletes and their sedentary peers had similar values for all pulmonary variables when expressed as absolute values. However, because the older athletes were shorter than the older sedentary men, their vital capacity, total lung capacity (TLC), and forced expiratory volume in 1 s were significantly larger than those of the older sedentary men when normalized for age and height; the average values for maximal voluntary ventilation and residual volume (RV) were also larger in the older athletes when normalized for age and height, but the differences were not significant. The young trained and untrained men did not differ in any of these measures. TLC was the only pulmonary variable that was the same in the young and older men; RV and the RV-to-TLC ratio were larger, whereas all other pulmonary function and volume measures were lower in the older men compared with the younger men. The older athletes were the only group whose lung volumes and pulmonary function measures were all, except for RV, substantially greater than expected based on their age and height. Thus prolonged strenuous endurance training in these older highly trained endurance athletes appears to have altered the decline in pulmonary function and volumes associated with aging. 相似文献
6.
H E Pay A E Hardman G J Jones A Hudson 《European journal of applied physiology and occupational physiology》1992,64(2):182-186
The acute effects of low-intensity exercise on plasma lipids were assessed in 22 healthy, normolipidaemic volunteers [mean age (SEM) 21.1 (0.2) years] of whom 11 were untrained and 11 endurance trained. Each subject walked for 2 h on a treadmill at a speed selected to elicit 30% [29.8 (3.9)%] of his or her maximal oxygen uptake. All subjects consumed a similar diet, i.e. 48% of energy from carbohydrate, for 2 days prior to the test. Pre-exercise, high-density lipoprotein (HDL) cholesterol concentration was higher in the trained group than in the untrained group [0.88 (0.06) mmol.l-1 vs 0.73 (0.09) mmol.l-1, P less than 0.05]. The walk elicited an increase in blood lactate concentration (P less than 0.01) but glucose homeostasis was well maintained by both groups. After 2 h of walking total cholesterol had increased by 13 (0.6)% (P less than 0.05). HDL cholesterol concentration increased by 17 (1.6)%, so that the ratio of total to HDL cholesterol was lower after the walk than pre-exercise (P less than 0.05). In the endurance-trained group HDL cholesterol concentration increased progressively, being 7.9 (2.4)% higher after 1 h and 19.7 (1.6)% higher after 2 h. A different response was evident in the untrained group where a rise after the 1st h [25.1 (2.3)%] was followed by a decrease towards pre-exercise values. These results show that one prolonged bout of low-intensity exercise modifies lipoprotein metabolism and hold out the interesting possibility that this response may differ in trained and untrained individuals. 相似文献
7.
Vissing K Brink M Lønbro S Sørensen H Overgaard K Danborg K Mortensen J Elstrøm O Rosenhøj N Ringgaard S Andersen JL Aagaard P 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(6):1799-1810
The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training. 相似文献
8.
J A Romijn E F Coyle L S Sidossis J Rosenblatt R R Wolfe 《Journal of applied physiology》2000,88(5):1707-1714
We have studied eight endurance-trained women at rest and during exercise at 25, 65, and 85% of maximal oxygen uptake. The rate of appearance (R(a)) of free fatty acids (FFA) was determined by infusion of [(2)H(2)]palmitate, and fat oxidation rates were determined by indirect calorimetry. Glucose kinetics were assessed with [6,6-(2)H(2)]glucose. Glucose R(a) increased in relation to exercise intensity. In contrast, whereas FFA R(a) was significantly increased to the same extent in low- and moderate-intensity exercise, during high-intensity exercise, FFA R(a) was reduced compared with the other exercise values. Carbohydrate oxidation increased progressively with exercise intensity, whereas the highest rate of fat oxidation was during exercise at 65% of maximal oxygen uptake. After correction for differences in lean body mass, there were no differences between these results and previously reported data in endurance-trained men studied under the same conditions, except for slight differences in glucose metabolism during low-intensity exercise (Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, and Wolfe RR. Am J Physiol Endocrinol Metab 265: E380-E391, 1993). We conclude that the patterns of changes in substrate kinetics during moderate- and high-intensity exercise are similar in trained men and women. 相似文献
9.
We hypothesized that abnormal endothelium-dependent vasodilation (EDD) found in older otherwise healthy subjects can be attenuated with long-term endurance training. Ten endurance-trained men, 68.5 +/- 2.3 yr old, and 10 healthy sedentary men, 64.7 +/- 1.4 yr old, were studied. Aerobic exercise capacity (VO(2 max)), fasting plasma cholesterol, insulin, and homocysteine concentrations were measured. Master athletes had higher VO(2 max) (42 +/- 2.3 vs. 27 +/- 1.4 ml. kg(-1). min(-1), P < 0.001), slightly higher total cholesterol (226 +/- 8 vs. 199 +/- 8 mg/dl, P = 0.05), similar insulin, and higher homocysteine (10.7 +/- 1.3 vs. 9.2 +/- 1.4 micromol/ml, p = 0.02) concentrations. Brachial arterial diameter, determined with vascular ultrasound, during the hyperemic response was greater in the master athletes than in controls (P = 0.005). Peak vasodilatory response was 109.1 +/- 2 vs. 103.6 +/- 2% (P < 0.05) in the athletes and controls, respectively. Endothelium-independent vasodilation in response to nitroglycerin was similar between the two groups. The increased arterial diameter during the hyperemic response correlated significantly with the VO(2 max) in the entire population (r = 0.66, P < 0.002). Our results suggest that long-term endurance exercise training in older men is associated with systemic enhanced EDD, which is even detectable in the conduit arteries of untrained muscle. 相似文献
10.
11.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise. 相似文献
12.
T M Rywik M R Blackman A R Yataco P V Vaitkevicius R C Zink E H Cottrell J G Wright L I Katzel J L Fleg 《Journal of applied physiology》1999,87(6):2136-2142
Using external vascular ultrasound, we measured brachial artery diameter (Diam) at rest, after release of 4 min of limb ischemia, i. e., endothelium-dependent dilation (EDD), and after sublingual nitroglycerin, i.e., non-endothelium-dependent dilation (NonEDD), in 35 healthy men aged 61-83 yr: 12 endurance athletes (A) and 23 controls (C). As anticipated, treadmill exercise maximal oxygen consumption (VO(2 max)) was significantly higher in A than in C (40. 2 +/- 6.6 vs. 27.9 +/- 3.8 ml. kg(-1). min(-1); respectively, P < 0. 0001). With regard to arterial physiology, A had greater EDD (8.9 +/- 4.2 vs. 5.7 +/- 3.5%; P = 0.02) and a tendency for higher NonEDD (13.9 +/- 6.7 vs. 9.7 +/- 4.2%; P = 0.07) compared with C. By multiple linear regression analysis in the combined sample of older men, only baseline Diam (beta = -2.0, where beta is the regression coefficient; P = 0.005) and VO(2 max) (beta = 0.23; P = 0.003) were independent predictors of EDD; similarly, only Diam (beta = -4.0; P = 0.003) and VO(2 max) (beta = 0.27; P = 0.01) predicted NonEDD. Thus endurance-trained older men demonstrate both augmented EDD and NonEDD, consistent with a generalized enhanced vasodilator responsiveness, compared with their sedentary age peers. 相似文献
13.
Joyner M. J.; Jilka S. M.; Taylor J. A.; Kalis J. K.; Nittolo J.; Hicks R. W.; Lohman T. G.; Wilmore J. H. 《Journal of applied physiology》1987,62(5):1819-1825
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise. 相似文献
14.
J Gorski 《Canadian journal of physiology and pharmacology》1992,70(1):123-131
Skeletal muscle cell contains a considerable amount of triglycerides. The amount stored depends on the animal species as well as on muscle fiber composition. It is well documented that triglycerides in the fast-twitch red muscle and to a lesser extent in the slow-twitch muscle, but not those in the fast-twitch white muscle, are mobilized during prolonged exercise. Yet, little is known about the regulation of the metabolism of muscle triglycerides either at rest or during exercise. This is well reflected by the fact that an enzyme responsible for the hydrolysis of muscle triglycerides has not been identified. Mobilization of muscle triglycerides during exercise seems to be under both adrenergic and noradrenergic control. Accumulation of lactic acid and reduction in muscle pH are likely to be strong inhibitors of muscle triglyceride lipolysis. Reduction of carbohydrate availability accelerates mobilization of muscle triglycerides during exercise. The relationship between the plasma free fatty acids and muscle triglyceride metabolism seems to be complex. It has been proposed that most free fatty acids entering the muscle cell is esterified before being oxidized, but this is arguable for contracting skeletal muscles. It is suggested that most free fatty acids entering contracting high oxidative myocytes are transported directly to the mitochondria. A much lesser portion is likely esterified. It is proposed that triglycerides stored in the contracting muscle cell are mobilized when the delivery of the blood-borne-free fatty acids to the mitochondria is insufficient. 相似文献
15.
R A Fielding C N Meredith K P O'Reilly W R Frontera J G Cannon W J Evans 《Journal of applied physiology》1991,71(2):674-679
The effects of eccentric exercise on whole body protein metabolism were compared in five young untrained [age 24 +/- 1 yr, maximal O2 uptake (VO2max) = 49 +/- 6 ml.kg-1.min-1] and five older untrained men (age 61 +/- 1 yr, VO2max = 34 +/- 2 ml.kg-1.min-1). They performed 45 min of eccentric exercise on a cycle ergometer at a power output equivalent to 80% VO2max (182 +/- 18 W). Beginning 5 days before exercise and continuing for at least 10 days after exercise, they consumed a eucaloric diet providing 1.5 g.kg-1.day-1 of protein. Leucine metabolism in the fed state was measured before, immediately after, and 10 days after exercise, with intravenous L-[1-13C]leucine as a tracer (0.115 mumol.kg-1.min-1). Leucine flux increased 9% immediately after exercise (P less than 0.011) and remained elevated 10 days later, with no effect of age. Leucine oxidation increased 19% immediately after exercise and remained 15% above baseline 10 days after exercise (P less than 0.0001), with no effect of age. In the young men, urinary excretion of 3-methylhistidine per gram of creatinine did not increase until 10 days postexercise (P less than 0.05), but in the older men, it increased 5 days after exercise and remained high through 10 days postexercise (P less than 0.05), averaging 37% higher than in the young men. These data suggest that eccentric exercise produces a similar increase in whole body protein breakdown in older and young men, but myofibrillar proteolysis may contribute more to whole body protein breakdown in the older group. 相似文献
16.
Z Brzezińska 《Archives internationales de physiologie et de biochimie》1987,95(4):305-312
In order to provide reference data, adenine nucleotide, creatine phosphate, glycogen, glycolytic intermediates and lactate muscle contents were measured in 49 dogs under resting conditions and during prolonged physical exercise of moderate intensity performed until exhaustion. Both the resting and exercise values of the measured variables were remarkably similar to those described in human subjects, except muscle lactate content which achieved higher values during submaximal exercise in dogs than in men. 相似文献
17.
P Dieterle I Bachl G Bachl J Henner D Frommeld P Minkus C Dieterle K P Hesse F Nassehinajad 《Hormones et métabolisme》1978,10(4):263-268
The influence of exercise on forearm muscle metabolism was examined in 9 healthy subjects, in 16 diabetics and in 4 obese subjects during complete starvation. During exercise glucose uptake rose 7-8 fold in the controls. However, no increase of glucose uptake was observed in the other groups studied. Moreover, a glucose production from the working muscle took place in about 40 percent of both the diabetic patients and the starved obese subjects. The nonutilization of glucose during physical work in the diabetic like states was accompanied by a significantly diminished lactate output. The arterial concentration of FFA, glycerol beta-HOB and Acac was markedly elevated in the starved obese patients. The FFA-uptake at rest and during exercise, however, was not different from results of controls. Whereas an effux of beta-HOB has been observed during exercise, Acac uptake was increased in these patients. It is suggested that in maturity onset and starvation diabetes glycolysis is inhibited. 相似文献
18.
Hubal MJ Rubinstein SR Clarkson PM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(4):1332-1338
This study assessed muscle fatigue patterns of the elbow flexors in untrained men and women to determine if sex differences exist during acute maximal eccentric exercise. High-intensity eccentric exercise is often used by athletes to elicit gains in muscle strength and size gains. Development of fatigue during this type of exercise can increase risk of injury; therefore, it is important to understand fatigue patterns during eccentric exercise to minimize injury risk exposure while still promoting training effects. While many isometric exercise studies have demonstrated that women show less fatigue, the patterns of fatigue during purely eccentric exercise have not been assessed in men and women. Based on the lack of sex differences in overall strength loss immediately post-eccentric exercise, it was hypothesized that women and men would have similar relative fatigue pattern responses (i.e., change from baseline) during a single bout of maximal eccentric exercise. Forty-six subjects (24 women and 22 men) completed 5 sets of 10 maximal eccentric contractions on an isokinetic dynamometer. Maximal voluntary isometric contraction strength was assessed at baseline and immediately following each exercise set. Maximal eccentric torque and contractile properties (i.e., contraction time, work, half relaxation time, and maximal rate of torque development) were calculated for each contraction. Men and women demonstrated similar relative isometric (32% for men and 39% for women) and eccentric (32% for men and 39% for women) fatigue as well as similar deficits in work done and rates of torque development and relaxation during exercise (p > 0.05). Untrained men and women displayed similar relative responses in all measures of muscle function during a single bout of maximal eccentric exercise of the elbow flexors. Thus, there is no reason to suspect that women may be more vulnerable to fatigue-related injury. 相似文献
19.
P A Tesch E B Colliander P Kaiser 《European journal of applied physiology and occupational physiology》1986,55(4):362-366
The objective of this study was to examine the muscle metabolic changes occurring during intense and prolonged, heavy-resistance exercise. Muscle biopsies were obtained from the vastus lateralis of 9 strength trained athletes before and 30 s after an exercise regimen comprising 5 sets each of front squats, back squats, leg presses and knee extensions using barbell or variable resistance machines. Each set was executed until muscle failure, which occurred within 6-12 muscle contractions. The exercise: rest ratio was approximately 1:2 and the total performance time was 30 min. Concentrations of adenosine triphosphate (ATP), creatine phosphate (CP), creatine, glycogen, glucose, glucose-6-phosphate (G-6-P), alpha-glycerophosphate (alpha-G-P) and lactate were determined on freeze-dried tissue samples using fluorometric assays. Blood samples were analyzed for lactate and glucose. The exercise produced significant reductions in ATP (p less than 0.01) and CP (p less than 0.001), while alpha-G-P more than doubled (p less than 0.05), glucose increased tenfold (p less than 0.001) and G-6-P fourfold (p less than 0.001). Muscle lactate concentration at cessation of exercise averaged 17.3 mmol X kg-1 w. w. Glycogen concentration decreased (p less than 0.001) from 160 to 118 mmol X kg-1 w. w. It is concluded that high intensity, heavy resistance exercise is associated with a high rate of energy utilization through phosphagen breakdown and activation of glycogenolysis. 相似文献
20.
Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men 总被引:3,自引:0,他引:3
We evaluated the hypotheses that endurance training increasesrelative lipid oxidation over a wide range of relative exercise intensities in fed and fasted states and that carbohydrate nutrition causes carbohydrate-derived fuels to predominate as energy sources during exercise. Pulmonary respiratory gas-exchange ratios [(RER) = CO2production/O2 consumption(O2)] were determinedduring four relative, graded exercise intensities in both fed andfasted states. Seven untrained (UT) men and seven category 2 and 3 US Cycling Federation cyclists (T) exercised in the morning in random order, with target power outputs of 20 and 40% peakO2(O2 peak) for 2 h,60% O2 peak for 1.5 h, and 80%O2 peak fora minimum of 30 min after either a 12-h overnight fast or 3 h after astandardized breakfast. Actual metabolic responses were 22 ± 0.33, 40 ± 0.31, 59 ± 0.32, and 75 ± 0.39%O2 peak. T subjectsshowed significantly (P < 0.05)decreased RER compared with UT subjects at absolute workloads when fedand fasted. Fasting significantly decreased RER values compared withthe fed state at 22, 40, and 59%O2 peak inT and at 40 and 59%O2 peak in UTsubjects. Training decreased (P < 0.05) mean RER values compared with UT subjects at 22%O2 peak when theyfasted, and at 40%O2 peak when fed orfasted, but not at higher relative exercise intensities in eithernutritional state. Our results support the hypothesis that endurancetraining enhances lipid oxidation in men after a 12-h overnight fast at low relative exercise intensities (22 and 40%O2 peak). However, atraining effect on RER was not apparent at high relative exercise intensities (59 and 75%O2 peak). Becausemost athletes train and compete at exercise intensities >40% maximalO2, they will not oxidize agreater proportion of lipids compared with untrained subjects,regardless of nutritional state. 相似文献