首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of substance P (SP) on monoamine-containing cells of the frog taste buds was studied by fluorescent microscopy. Intraperitoneal injection of SP resulted in a gradual increase of cell serotonin content. In monoamine deficiency caused by previous injection of rausedyl, SP favoured the recovery of the serotonin level to initial. When SP and rausedyl were used combined, SP protected the serotonin-containing cells from the depleting effect of rausedyl. The functional role of SP in the taste apparatus is discussed.  相似文献   

2.
Summary The taste buds on the barbels in three species of teleosts (Cyprinus carpio, Misgurnus anguillicaudatus, Parasilurus asotus) were studied by means of fluorescence and electron microscopy. Intensely yellow-fluorescent cells, which are disk-shaped and located exclusively in a basal position, are observed in the barbel-buds of all fishes examined. The basal cells contain a large number of small clear vesicles approximately 40–60 nm in diameter, which show a tendency to aggregate in the cytoplasm facing the junction of the nerve terminals; chemically transmitting synapses are seen in the latter region. It is suggested from the present observations that the basal cells in the barbel-bud may originate from Schwann cells and have a dual function both as mechanoreceptors and paracrine elements. Since the administration of 5,6-DHT results in an appearance of small dense vesicles among the small clear vesicles, the possibility exists that the basal cell may be capable of taking up monoamines and storing them in the small clear vesicles.  相似文献   

3.
A clearly positive correlation between the level of substance P (SP) in the taste nerves and cellular serotonin content in the taste buds has been established using fluorescent-histochemical technique. In chronic SP deficiency caused by capsaicin, cellular serotonin content was considerably decreased due to the disturbances in its synthesis and uptake. The injection of exogenous SP resulted in the recovery of the initial serotonin level. The data obtained confirm an important role of SP in the maintenance of the optimal cellular serotonin level owing to the activation of monoamine synthesis and uptake.  相似文献   

4.
Summary Sequential changes in the monoamine-contianing cell (MC cell) of the developing frog tongue has been studied by fluorescence histochemistry using uptake of 5,6-dihydroxytryptamine. At st. 16, a few yellow fluorescent cells, here called MC cells, appeared in random order at the uppermost layer of the dorsal epithelium. They were round or elliptical in shape. At st. 18 the MC cells, greatly transformed, were found at the periphery of the sensory disc primordium which first appears during this stage. The MC cell was made up of three parts: perikaryon, process and terminal portion. The perikaryon was located at the upper half of the epithelium and from it a single process stretched vertically toward the basal lamina, above which the dilated terminal portion was found. Thereafter the perikaryon gradually moved toward the basal layer while remaining at the periphery of the disc primordium. Meanwhile the terminal portion moved over the basal lamina toward the center of the disc primordium. At st. 22, the whole of the MC cell lay flat above the basal lamina. The perikaryon was localized at the periphery of the sensory disc and from there the process stretched toward the center. Thus, the morphology of MC cells resembled the adult state, except for smaller size. MC cells were never observed in the subepithelial connective tissue in the present study. This seems to suggest that the MC cell of the frog fungiform papilla is of epithelial origin.  相似文献   

5.
6.
An attempt was made to identify specific monoamines contained in the dumb-bell shape cells of the frog taste bud by means of histochemical analysis. It was shown by fluorescent microscopy that preliminary administration of exogenous serotonin into the blood channel of frog tongue resulted in a sharp increase of specific fluorescence of the dumb-bell shape cells, whereas serotonin synthesis inhibition with p-chlorphenylalanine led to reduction and elimination of specific fluorescence. It was concluded that-specific monoamine of the dumb-bell shape cells was possibly of serotonin-like nature.  相似文献   

7.
8.
9.
10.
11.
The structure of catecholamine-containing dumb-bell shaped cells of the taste buds was studied by luminescent microscopy in the epithelial layer of the frog's tongue (Rana temporaria). On the unilateral section of the lingual nerve, a maintained adrenergic innervation of vessels and of the epithelium was observed, a decreased number of dumb-bell shaped cells in the taste bud, and their significant enlargement, and increased cathecholamine luminescence. With desympathization, no adrenergic nerves were observed on the vessels and the epithelium of the tongue. The size of the taste buds in desympathized cells of the tongue is sharply decreased and their number is increased. There is a tendency to grouping of the dumbbell shaped cells into 3--4 taste buds in one fungiform papillina. The experiments with sensory and sympathetic denervation of the frog tongue distinctly showed the trophic action of sensory and sympathetic nerves on the taste organ of the frog.  相似文献   

12.
Intraperitoneal injection of parachlorphenylalanine to guinea-pigs leads to an increase in the blood tryptophan content and a reduction of blood serum activity that determines tryptophan cell uptake. Administration of 5-hydroxytryptophan brings about opposing changes in the parameters indicated. The presence of a reverse correlation between variations of tryptophan content and blood serum activity responsible for tryptophan cell uptake, which occur under the effect of substances that change the rate of serotonin synthesis indicates that these factors belong to the united system controlling tryptophan metabolism.  相似文献   

13.
Summary Effect of colchicine on the ultrastructure of taste bud cells was studied in the mouse. In untreated mice microtubules were abundant throughout the entire cytoplasm of type-III cells, but only in the apical cytoplasm of type-I cells. After 2 h of colchicine treatment, no microtubules were observed in any taste bud cells; dense secretory granules in the apical cytoplasm of type-I cells mostly disappeared, and instead, numerous phagosomes appeared. It is suggested that colchicine causes an interruption of the transport of the secretory granules in type-I cells from the Golgi apparatus to the membrane of the apical surface, from which release occurs. In type-III cells, after 4 or 5 h of treatment, dense-cored vesicles scattered throughout the cytoplasm tended to increase in number; they were often observed to accumulate in the vicinity of the Golgi apparatus. Five hours after treatment with 5-hydroxy-l-tryptophan (5-HTP) following colchicine pretreatment, monoamine specific fluorescent cells and vesicles with highly electron-dense cores of type-III cells were still present. On the other hand, 5 h after 5-HTP treatment alone both fluorescent cells and vesicles with highly electron-dense cores had already disappeared. These observations suggest that the treatment with colchicine interrupts the transport of densecored vesicles of type-III cells to synaptic areas, in which those vesicles are presumed to discharge the neurotransmitter substance.  相似文献   

14.
Immuno-electron microscopy with the protein A-gold method demonstrated immunoreactive gold particles against 5-hydroxytryptamine localized in cored vesicles aggregating around presynaptic terminals of the gustatory cells in monkey and rabbit taste buds. The positive reactions were also found in the intragemmal and subepithelial nerve fibers. The role of these cored vesicles in taste transduction is still uncertain but the data strongly suggest that they may participate in a serotonergic modulation of a cholinergic synaptic transmission from the gustatory cells to the nerve endings.  相似文献   

15.
16.
17.
Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 ± 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 ± 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3), α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10–12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells.  相似文献   

18.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

19.
—Preparations of synaptosomes (P2) from the telencephalon and from the diencephalon plus optic lobes of the pigeon and from the telencephalon of the rat were used to study the effects of 5-hydroxytryptophan (5-HTP) on (a) the levels of serotonin (5-HT) in nerve endings and (b) the release of 5-HT from nerve endings. The levels of 5-HT were significantly higher (3.21 × 0.35 nmol/g original tissue weight) in the P2 fraction isolated from the telencephalon of pigeons given intramuscular injections of 50mg/kg of d ,l -5-HTP in comparison to control values (1.42 ± 0.07). A similar twofold increase was observed with the P2 fraction isolated from the diencephalon plus optic lobes. In addition, the levels of 5-HTP and 5-hydroxyindoleacetic acid also increased significantly in these P2 fractions isolated from pigeons given d ,l -5-HTP injections in comparison to values obtained for pigeons given saline injections. In vitro studies using preparations of synaptosomes (from both pigeon and rat) labelled with [3H]5-HT indicated that 0.10 mil l -5-HTP increased the release of [3H]5-HT twofold over control values. A concentration as low as 0.001 mm l -5-HTP was tested on the P2 fraction from the telencephalon of the pigeon and was found to significantly increase the release of [3H]5-HT over control values. This effect by l -5-HTP was blocked if a decarboxylase inhibitor was added to the medium. l -5-HTP at a concentration of 1.5 mm had no apparent effect on the release of [3H]norepinephrine or [3H]dopamine from synaptosomes prepared from the telencephalon of the rat or pigeon. The results are discussed in terms of the role of serotonin in producing certain types of behavioral depressions exhibited by pigeons and rats given injections of 5-HTP.  相似文献   

20.
Denervation of taste buds in the rabbit   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号