首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ADP-ribosylation of cell surface proteins in mammalian cells is a post-translational modification by which ecto-ADP-ribosyltransferases (ARTs) transfer ADP-ribose from extracellular NAD to protein targets. The ART2 locus at murine chromosome 7 encompasses the tandem Art2a and Art2b genes that encode the distinct ART2.1 and ART2.2 proteins. Although both ecto-enzymes share 80% sequence identity, ART2.1 activity is uniquely regulated by an allosteric disulfide bond that is reducible in the presence of extracellular thiols, such as cysteine and glutathione, that accumulate in hypoxic and ischemic tissues. Previous studies have characterized the expression of ART2.1 and ART2.2 in murine T lymphocytes but not in other major classes of lymphoid and myeloid leukocytes. Here, we describe the expression of ART2.1 activity in a wide range of freshly isolated or tissue-cultured murine myeloid and lymphoid leukocytes. Spleen-derived macrophages, dendritic cells (DC), and B cells constitutively express ART2.1 as their predominant ART while spleen T cells express both ART2.1 and the thiol-independent ART2.2 isoform. Although bone-marrow-derived macrophages (BMDM) and dendritic cells (BMDC) constitutively express ART2.1 at low levels, it is markedly up-regulated when these cells are stimulated in vitro with IFNβ or IFNγ. ART2.1 expression and activity in splenic B cells is modestly up-regulated during incubation in vitro for 24 h, a condition that promotes B cell apoptosis. This increase in ART2.1 is attenuated by IL-4 (a B cell survival factor), but is not affected by IFNβ/γ, suggesting a possible induction of ART2.1 as an ancillary response to B cell apoptosis. In contrast, ART2.1 and ART2.2, which are highly expressed in freshly isolated splenic T cells, are markedly down-regulated when purified T cells are incubated in vitro for 12–24 h. Studies with the BW5147 mouse thymocyte line verified basal expression of ART2.1 and ART2.2, as in primary spleen T cells, and demonstrated that both isoforms can be up-regulated when T cells are maintained in the presence of IFNs. Comparison of the surface proteins which are ADP-ribosylated by ART2.1 in the different leukocyte subtypes indicated both shared and cell-specific proteins as ART2.1 substrates. The LFA-1 integrin, a major target for ART2.2 in T cells, is also ADP-ribosylated by the ART2.1 expressed in macrophages. Thus, ART2.1, in contrast to ART2.2, is expressed in a broad range of myeloid and lymphoid leukocytes. The thiol redox-sensitive nature of this ecto-enzyme suggests an involvement in purinergic signaling that occurs in the combined context of inflammation and hypoxia/ischemia.  相似文献   

2.
T cells proteolytically shed the ectodomains of several cell surface proteins and, thereby, can alter their responsiveness and can release soluble intercellular regulators. ART2.2 is a GPI-anchored ecto-ADP-ribosyltransferase (ART) related to ADP-ribosylating bacterial toxins. ART2.2 is expressed exclusively by mature T cells. Here we show that ART2.2 is shed from the cell surface in enzymatically active form upon activation of T cells. Shedding of ART2.2 resembles that of L-selectin (CD62L) in dose response, kinetics of release, and sensitivity to the metalloprotease inhibitor Immunex Compound 3, suggesting that ART2.2, like CD62L, is cleaved by TNF-alpha-converting enzyme or by another metalloprotease. ART2.2 shed from activated T cells migrates slightly faster in SDS-PAGE analyses than does ART2.2 released upon cleavage of the GPI anchor. This indicates that shedding of ART2.2 is mediated by proteolytic cleavage close to its membrane anchor. Shed ART2.2 is enzymatically active and ADP-ribosylates several substrates in vitro. Thus, shedding of ART2.2 releases a potential intercellular regulator. Finally, using a new FACS assay for monitoring ADP-ribosylation of cell surface proteins, we demonstrate that shedding of ART2.2 correlates with a reduced sensitivity of T cell surface proteins to ADP-ribosylation. Our findings suggest that by shedding ART2.2 the activated T cell not only releases a potential intercellular regulator but also may alter its responsiveness to immune regulation by ART2.2-mediated ADP-ribosylation of cell surface proteins.  相似文献   

3.
The neuregulins (NRGs) are a family of four structurally related growth factors that are expressed in the developing and adult brain. NRG-1 is essential for normal heart formation and has been implicated in the development and maintenance of both neurons and glia. NRG-2 was identified on the basis of its homology to NRG-1 and, like NRG-1, is expressed predominantly by neurons in the central nervous system. We have generated mice with the active domain of NRG-2 deleted in an effort to characterize the biological function of NRG-2 in vivo. In contrast to the NRG-1 knockout animals, NRG-2 knockouts have no apparent heart defects and survive embryogenesis. Mutant mice display early growth retardation and reduced reproductive capacity. No obvious histological differences were observed in the major sites of NRG-2 expression. Our results indicate that in vivo NRG-2 activity differs substantially from that of NRG-1 and that it is not essential for normal development in utero.  相似文献   

4.
Ritter H  Koch-Nolte F  Marquez VE  Schulz GE 《Biochemistry》2003,42(34):10155-10162
The structures of beta-methylenethiazole-4-carboxamide adenine dinucleotide (TAD), NAD(+), and NADH as bound to ecto-ADP-ribosyltransferase 2.2 from rat and to its mutants E189I and E189A, respectively, have been established. The positions and conformations of NAD(+) and its analogues agree in general with those in other ADP-ribosyltransferases. The kinetic constants for NAD(+) hydrolysis were determined by RP-HPLC. The specific activity amounts to 26 units/mg, which is 6000-fold higher than a previously reported rate and 500-fold higher than the hydrolysis rates of other ADP-ribosyltransferases, confirming that hydrolysis is the major function of this enzyme. On the basis of structures and mutant activities, a catalytic mechanism is proposed. The known auto-ADP-ribosylation of the enzyme at the suggested position R184 is supported by one of the crystal structures where the nucleophile position is occupied by an Neta atom of this arginine which in turn is backed up by the base E159.  相似文献   

5.
Telomere length and function are crucial factors that determine the capacity for cell proliferation and survival, mediate cellular senescence, and play a role in malignant transformation in eukaryotic systems. The telomere length of a specific mammalian species is maintained within a given range by the action of telomerase and telomere-associated proteins. TRF1 is a telomere-associated protein that inhibits telomere elongation by its binding to telomere repeats, preventing access to telomerase. Human TRF1 interacts with tankyrase 1 and tankyrase 2 proteins, two related members of the tankyrase family shown to have poly(ADP-ribose) polymerase activity. Human tankyrase 1 is reported to ADP-ribosylate TRF1 and to down-regulate the telomeric repeat binding activity of TRF1, resulting in telomerase-dependent telomere elongation. Human tankyrase 2 is proposed to have activity similar to that of tankyrase 1, although tankyrase 2 function has been less extensively characterized. In the present study, we have assessed the in vivo function of mouse tankyrase 2 by germ line gene inactivation and show that inactivation of tankyrase 2 does not result in detectable alteration in telomere length when monitored through multiple generations of breeding. This finding suggests that either mouse tankyrases 1 and 2 have redundant functions in telomere length maintenance or that mouse tankyrase 2 differs from human tankyrase 2 in its role in telomere length maintenance. Tankyrase 2 deficiency did result in a significant decrease in body weight sustained through at least the first year of life, most marked in male mice, suggesting that tankyrase 2 functions in potentially telomerase-independent pathways to affect overall development and/or metabolism.  相似文献   

6.
Generation and characterization of Smac/DIABLO-deficient mice   总被引:9,自引:0,他引:9       下载免费PDF全文
The mitochondrial proapoptotic protein Smac/DIABLO has recently been shown to potentiate apoptosis by counteracting the antiapoptotic function of the inhibitor of apoptosis proteins (IAPs). In response to apoptotic stimuli, Smac is released into the cytosol and promotes caspase activation by binding to IAPs, thereby blocking their function. These observations have suggested that Smac is a new regulator of apoptosis. To better understand the physiological function of Smac in normal cells, we generated Smac-deficient (Smac(-/-)) mice by using homologous recombination in embryonic stem (ES) cells. Smac(-/-) mice were viable, grew, and matured normally and did not show any histological abnormalities. Although the cleavage in vitro of procaspase-3 was inhibited in lysates of Smac(-/-) cells, all types of cultured Smac(-/-) cells tested responded normally to all apoptotic stimuli applied. There were also no detectable differences in Fas-mediated apoptosis in the liver in vivo. Our data strongly suggest the existence of a redundant molecule or molecules capable of compensating for a loss of Smac function.  相似文献   

7.
8.
9.
10.
该研究以芜菁(Brassica rapa var.rapa)为材料,克隆得到重金属ATP酶(HMA)家族1对同源基因BrrHMA2.1(GenBank登录号:MG_283237)和BrrHMA2.2(GenBank登录号:MG_283238),并对其蛋白质序列特征和基因表达模式进行分析。结果表明:(1)BrrHMA2.1和BrrHMA2.2基因的全长开放阅读框分别为2 619和2 724bp,分别编码872和907个氨基酸;序列结构分析显示,BrrHMA2.1和BrrHMA2.2蛋白含有6个跨膜区和HMA蛋白家族保守结构域;系统进化树结果显示,BrrHMA2.1和BrrHMA2.2蛋白与拟南芥HMA家族成员AtHMA2进化关系最近。(2)亚细胞定位结果表明,BrrHMA2.1和BrrHMA2.2蛋白都定位于细胞膜上。(3)qRT-PCR分析表明,芜菁生长初期BrrHMA2.1和BrrHMA2.2基因在叶中的表达量最高;随着生长时间的延长,叶中的表达量逐渐降低,而根中的表达量逐渐增加。(4)研究发现,BrrHMA2.1受Cd~(2+)、Zn~(2+)、Na~+、Mg~(2+)胁迫诱导表达,BrrHMA2.2受Cd~(2+)、Na~+、Cu~(2+)胁迫诱导表达,表明2个基因可能参与这些金属离子的转运过程。该研究结果为进一步研究植物HMA基因在重金属吸收和转运过程中的功能奠定了基础。  相似文献   

11.
Mice lacking cryptochromes (mCry1-/- mCry2-/-) were kept in a 16h light, 8h dark, light-dark (16:8 LD) cycle and were given additional pulses of light of different brightness, starting 2h after dark onset and lasting for 1h. The suppression of wheel running during these light pulses (i.e., masking) was compared to that of wild types. No evidence of any decrement in the masking response to light was detected. As well as studying masking, minor bouts of activity occurring in the main light portion of a light-dark cycle were quantified. One possible explanation of such predark activity is that some damped endogenous process is spared in mCry1/mCry2 double-knockout mice. (Chronobiology International, 18(4), 613-625, 2001)  相似文献   

12.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

13.
14.
ADP-ribosyltransferases (ARTs) are a family of enzymes that catalyze the covalent transfer of an ADP-ribose moiety, derived from NAD, to an amino acid of an acceptor protein, thereby altering its function. To date, little information is available on the protein target specificity of different ART family members. ART2 is a T-cell-specific transferase, attached to the cell surface by a glycosylphosphatidylinositol (GPI) anchor, and also found in serum. Here we investigated the role of ART2 localization in serum or on the cell surface, or solubilized with detergents or enzymes, on its target protein specificity. We found that detergent solubilization of cell membranes, or release of ART2 by phosphoinositide-specific phospholipase C treatment, altered the ability of ART2 to ADP-ribosylate high or low molecular weight histone proteins. Similarly, soluble recombinant ART2 (lacking the GPI anchor) showed a different histone specificity than did cell-bound ART2. When soluble ART2 was incubated with serum proteins in the presence of [32P]-labeled NAD, several serum proteins were ADP-ribosylated in a thiol-specific manner. Mass spectrometry of labeled proteins identified albumin and transferrin as ADP-ribosylated proteins in serum. Collectively, these studies reveal that the membrane or solution environment of ART2 plays a pivotal role in determining its substrate specificity.  相似文献   

15.
16.
dickkopf (dkk) genes encode a small family of secreted Wnt antagonists, except for dkk3, which is divergent and whose function is poorly understood. Here, we describe the generation and characterization of dkk3 mutant mice. dkk3-deficient mice are viable and fertile. Phenotypic analysis shows no major alterations in organ morphology, physiology, and most clinical chemistry parameters. Since Dkk3 was proposed to function as thyroid hormone binding protein, we have analyzed deiodinase activities, as well as thyroid hormone levels. Mutant mice are euthyroid, and the data do not support a relationship of dkk3 with thyroid hormone metabolism. Altered phenotypes in dkk3 mutant mice were observed in the frequency of NK cells, immunoglobulin M, hemoglobin, and hematocrit levels, as well as lung ventilation. Furthermore, dkk3-deficient mice display hyperactivity.  相似文献   

17.
Generation and characterization of endonuclease G null mice   总被引:6,自引:0,他引:6       下载免费PDF全文
Endonuclease G (endo G) is one of the most abundant nucleases in eukaryotic cells. It is encoded in the nucleus and imported to the mitochondrial intermembrane space. This nuclease is active on single- and double-stranded DNA. We genetically disrupted the endo G gene in mice without disturbing a conserved, overlapping gene of unknown function that is oriented tail to tail with the endo G gene. In these mice, the production of endo G protein is not detected, and the disruption abolishes the nuclease activity of endo G. The absence of endo G has no effect on mitochondrial DNA copy number, structure, or mutation rate over the first five generations. There is also no obvious effect on nuclear DNA degradation in standard apoptosis assays. The endo G null mice are viable and show no age-related or generational abnormalities anatomically or histologically. We infer that this highly conserved protein has no mitochondrial or apoptosis function that can discerned by the assays described here and that it may have a function yet to be determined. The early embryonic lethality of endo G null mice recently reported by others may be due to the disruption of the gene that overlaps the endo G gene.  相似文献   

18.
19.
Generation and characterization of Rac3 knockout mice   总被引:5,自引:1,他引:4       下载免费PDF全文
Rac proteins are members of the Rho family of GTPases involved in the regulation of actin dynamics. The three highly homologous Rac proteins in mammals are the ubiquitous Rac1, the hematopoiesis-specific Rac2, and the least-characterized Rac3. We show here that Rac3 mRNA is widely and specifically expressed in the developing nervous system, with highest concentration at embryonic day 13 in the dorsal root ganglia and ventral spinal cord. At postnatal day 7 Rac3 appears particularly abundant in populations of projection neurons in several regions of the brain, including the fifth layer of the cortex and the CA1-CA3 region of the hippocampus. We generated mice deleted for the Rac3 gene with the aim of analyzing the function of this GTPase in vivo. Rac3 knockout animals survive embryogenesis and show no obvious developmental defects. Interestingly, specific behavioral differences were detected in the Rac3-deficient animals, since motor coordination and motor learning on the rotarod was superior to that of their wild-type littermates. No obvious histological or immunohistological differences were observed at major sites of Rac3 expression. Our results indicate that, in vivo, Rac3 activity is not strictly required for normal development in utero but may be relevant to later events in the development of a functional nervous system.  相似文献   

20.
Generation and characterization of Rgs4 mutant mice   总被引:5,自引:1,他引:5       下载免费PDF全文
RGS proteins are negative regulators of signaling through heterotrimeric G protein-coupled receptors and, as such, are in a position to regulate a plethora of biological phenomena. However, those have just begun to be explored in vivo. Here, we describe a mouse line deficient for Rgs4, a gene normally expressed early on in discrete populations of differentiating neurons and later on at multiple sites of the central nervous system, the cortex in particular, where it is one of the most highly transcribed Rgs genes. Rgs4lacZ/lacZ mice had normal neural development and were viable and fertile. Behavioral testing on mutant adults revealed subtle sensorimotor deficits but, so far, supported neither the proposed status of Rgs4 as a schizophrenia susceptibility gene (by showing intact prepulse inhibition in the mutants) nor (unlike another member of the Rgs family, Rgs9) a role of Rgs4 in the acute or chronic response to opioids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号