首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A water-soluble polysaccharide isolated from the hot water extract of the green fruits of Capsicum annuum was found to consist of 3-O-acyl-l-rhamnose, d-methyl galacturonate, 6-O-methyl-d-galactose in a molar proportion of nearly 1:2:1. Structural investigation of the polysaccharide was carried out using total hydrolysis, methylation analysis, periodate oxidation followed by GLC-MS, and NMR experiments. On the basis of the above-mentioned experiments it is concluded that the following repeating unit is present in the polysaccharide.  相似文献   

2.
The O-specific polysaccharide of Providencia alcalifaciens O16 was obtained by mild-acid degradation of the lipopolysaccharide and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. It was found that the polysaccharide contains N-acetylmuramic acid, which was isolated by solvolysis with trifluoromethanesulfonic acid and identified by the specific optical rotation and NMR spectroscopy. The following structure of the trisaccharide repeating-unit of the polysaccharide was established:  相似文献   

3.
The O-specific polysaccharide chain (O-antigen) of the lipopolysaccharide (LPS) of Providencia stuartii O49 was studied using sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, ROESY, H-detected 1H, 13C HSQC and HMBC experiments. The polysaccharide was found to have the trisaccharide repeating unit with the following structure: -->6)-beta-D-Galp(1-->3)-beta-D-GalpNAc(1-->4)-alpha-D-Galp(1-->  相似文献   

4.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

5.
Rhodococcus sp. 33 can tolerate and efficiently degrade various concentrations of benzene, one of the most toxic and prevailing environmental pollutants. This strain produces a large quantity of extracellular polysaccharide (33 EPS), which plays an important role in the benzene tolerance in Rhodococcus sp. 33, especially by helping the cells to survive an initial challenge with benzene. This EPS has been reported to be composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1. To understand the protective effect of 33 EPS, we determined its chemical structure by using 1H and 13C NMR spectroscopy including 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units with the following structure: [structure: see text].  相似文献   

6.
The structure of an acidic polysaccharide from Pseudoalteromonas atlantica strain 14165 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac) has been elucidated. The polysaccharide was studied by 1H and 13C NMR spectroscopy, including 2D experiments, along with sugar and methylation analyses. After a selective hydrolysis a modified polysaccharide devoid of its side chain could be isolated. It was found that the polysaccharide has pentasaccharide repeating units with following structure: [structure: see text].  相似文献   

7.
The structure of the phenol-soluble polysaccharide from Pseudoalteromonas rubra type strain ATCC 29570T has been elucidated using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, gNOESY, ROESY, 1H,13C gHMQC and gHMBC experiments. It is concluded that the trisaccharide repeating unit of the polysaccharide has the following structure: [carbohydrate structure: see text] where Sug is 2-acetamido-2,6-dideoxy-D-xylo-hexos-4-ulose, Am is acetimidoyl and Acyl is a malic acid residue, which is O-acetylated in approximately 70% of the units.  相似文献   

8.
A phosphorylated, choline-containing polysaccharide was obtained by O-deacylation of the lipopolysaccharide (LPS) of Proteus mirabilis O18 by treatment with aqueous 12% ammonia, whereas hydrolysis with dilute acetic acid resulted in depolymerisation of the polysaccharide chain by the glycosyl phosphate linkage. Treatment of the O-deacylated LPS with aqueous 48% hydrofluoric acid cleaved the glycosyl phosphate group but, unexpectedly, did not affect the choline phosphate group. The polysaccharide and the derived oligosaccharides were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the pentasaccharide phosphate repeating unit was established: [carbohydrate structure in text] Where ChoP=Phosphocoline Immunochemical studies of the LPS, O-deacylated LPS and partially dephosphorylated pentasaccharide using rabbit polyclonal anti-P. mirabilis O18 serum showed the importance of the glycosyl phosphate group in manifesting the serological specificity of the O18-antigen.  相似文献   

9.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

10.
A water-soluble polysaccharide isolated from the aqueous extract of the corm of Amorphophallus campanulatus was found to contain d-galactose, d-glucose, 4-O-acyl-d-methyl galacturonate, and l-arabinose in a molar ratio 2:1:1:1. Structural investigation of the polysaccharide was carried out using acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies (1H, 13C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of the above-mentioned experiments the structure of the repeating unit of the polysaccharide was established as:This molecule showed splenocyte activation.  相似文献   

11.
A water-soluble polysaccharide, (Fr. II) isolated from aqueous extract of an edible mushroom Pleurotus sajor-caju, was found to consist of D-glucose, D-galactose, and D-mannose in a molar proportion of 1:1:1. Compositional analysis, methylation analysis, periodate oxidation study, partial hydrolysis, and NMR experiments ((1)H, (13)C, 2D-COSY, TOCSY, NOESY, HSQC, and HMBC) revealed the presence of the following repeating unit in the polysaccharide: [formula: see text]  相似文献   

12.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O176 has been determined. Component analysis together with 1H and 13C NMR spectroscopy was employed to elucidate the structure. Inter-residue correlations were determined by 1H, 1H NOESY and 1H, 13C heteronuclear multiple-bond correlation experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [Formula: see text] Cross-peaks of low intensity from alpha-linked mannopyranosyl residues were present in the 1H, 1H TOCSY NMR spectra and further analysis of these showed that they originate from the terminal part of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O176 O-antigen is similar to those from E. coli O17 and O77, thereby explaining the reported cross-reactivities between the strains, and identical to that of Salmonella cerro (O:6, 14, 18).  相似文献   

13.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides.  相似文献   

14.
The O-polysaccharide (O-antigen) of Providencia stuartii O18 was obtained by mild acid degradation of the lipopolysaccharide and studied by chemical methods and NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [structure: see text] where Qui3NAc is 3-acetamido-3,6-dideoxyglucose. Anti-P. stuartii O18 serum cross-reacted with the O-antigen of Proteus genomospecies 4, which could be accounted for the marked structural similarities of the main chain.  相似文献   

15.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O15 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, and H-detected 1H,(13)C HMQC experiments. The polysaccharide was found to contain an ether of GlcNAc with lactic acid, and the following structure of the repeating unit was established:-->3)-alpha-D-GlcpNAc4(R-Lac)6Ac-(1-->2)-beta-D-GlcpA-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where L-6dTal and D-GlcNAc4(R-Lac) are 6-deoxy-L-talose and 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose, respectively. The latter sugar, which to our knowledge has not been hitherto found in nature, was isolated from the polysaccharide by solvolysis with anhydrous triflic acid and identified by comparison with the authentic synthetic compound. Serological studies with the Smith-degraded polysaccharide showed an importance of 2-substituted GlcA for manifesting of the immunospecificity of P. vulgaris O15.  相似文献   

16.
The O-specific polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of the marine bacterium Shewanella fidelis type strain KMM 3582T and studied by sugar analysis along with 1H and 13C NMR spectroscopy including one-dimensional NOE in difference mode and two-dimensional experiments. The polysaccharide was found to consist of linear tetrasaccharide repeating units containing Nepsilon-[(S)-1-carboxyethyl]-Nalpha-(D-galacturonoyl)-L-lysine and having the following structure: [See text.] The amide of D-galacturonic acid with Nepsilon-[(S)-1-carboxyethyl]-L-lysine ('alaninolysine', 2S,8S-AlaLys) was found for the first time in nature as a component of the O-specific polysaccharide of Providencia rustigianii O14 (Carbohydr. Res. 2003, 338, 1009-1016).  相似文献   

17.
A fucosylated polysaccharide sulfate, AMP-2, was purified by DEAE-Sepharose Fast Flow and Sephadex G-100 columns in successive steps from a special sea cucumber in southeastern China. HPLC and cellulose acetate membrane electrophoresis experiments confirmed AMP-2 was a homogenous carbohydrate with a relative molecular weight of ca. 2.4 × 104 Da, and methylation analysis indicated that polysaccharide was composed of 1-substituted-Galp, 1,4-disubstituted-GalNp, 1,2-disubstituted-FucSp, 1,4,6-trisubstituted-Glcp in a molar ratio of ca. 0.5:2.0:1.0:3.0, together with a small amount of different substituted Manp. Sulfated derivative and carboxymethylated derivative were prepared using dry pyridine and chlorosulfonic acid, and chloroacetic acid, respectively. Anticoagulant activities in vitro investigation showed that sulfated derivative showed a stronger ability than native polysaccharide and carboxymethylated derivative, which might be caused by their different percentages and types of functional groups in their structures.  相似文献   

18.
Yang Y  Zhang J  Liu Y  Tang Q  Zhao Z  Xia W 《Carbohydrate research》2007,342(8):1063-1070
PIP60-1, a novel heteropolysaccharide isolated from fruiting bodies of the medicinal fungus, Phellinus igniarius, has a molecular weight of 1.71 x 10(4)Da and is composed of L-fucose, D-glucose, D-mannose, D-galactose and 3-O-Me-D-galactose in a ratio of 1:1:1:2:1. A structural investigation of PIP60-1 carried out using sugar and methylation analyses, combined with (1)H and (13)C NMR spectroscopy, including COSY, TOCSY, NOESY, HSQC and HMBC experiments, established the repeating unit of the polysaccharide as the following: [structure: see text]  相似文献   

19.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O47:H4, strain 3646/51. Studies by sugar and methylation analyses along with Smith degradation and 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, ROESY and H-detected 1H,13C HSQC and HMBC experiments, showed that the polysaccharide has a branched hexasaccharide repeating unit with the following structure: [carbohydrate structure: see text]  相似文献   

20.
The O-polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O57:H29. Studies by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and HMBC experiments, showed that the polysaccharide contains an amide of D-galacturonic acid with L-alanine and has the following pentasaccharide repeating unit: [formula: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号