首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Oxidative stress has been implicated in the etiology of Parkinson's disease (PD). The important biochemical features of PD, being profound deficit in dopamine (DA) content, reduced glutathione (GSH), and enhanced lipid peroxidation (LPO) in dopaminergic (DA-ergic) neurons resulting in oxidative stress, mitochondrial dysfunction and apoptosis. Rotenone-induced neurotoxicity is a well acknowledged preclinical model for studying PD in rodents as it produces selective DA-ergic neuronal degeneration. In our previous study, we have shown that chronic administration of rotenone to rats is able to produce motor dysfunction, which increases progressively with rotenone treatment and centrophenoxine (CPH) co-treatment is able to attenuate these motor defects. The present study was carried out to evaluate the antioxidant potential of CPH against rotenone-induced oxidative stress. Chronic administration of rotenone to SD rats resulted in marked oxidative damage in the midbrain region compared to other regions of the brain and CPH co-treatment successfully attenuated most of these changes. CPH significantly attenuated rotenone-induced depletion in DA, GSH and increase in LPO levels. In addition, the drug prevented the increase in nitric oxide (NO) and citrulline levels and also enhanced the activity of catalase and superoxide dismutase (SOD). Histological analysis carried out using hematoxylin and eosin staining has indicated severe damage to mid brain in comparison to cortex and cerebellum and this damage is attenuated by CPH co-treatment. Our results strongly indicate the possible therapeutic potential of centrophenoxine as an antioxidant in Parkinson's disease and other movement disorders where oxidative stress is a key player in the disease process.  相似文献   

2.
Loss-of-function mutations in the gene encoding the multifunctional protein, DJ-1, have been implicated in the pathogenesis of early-onset familial Parkinson's disease (PD), suggesting that DJ-1 may act as a neuroprotectant for dopaminergic (DA) neurons. Enhanced autophagy may benefit PD by clearing damaged organelles and protein aggregates; thus, we determined if DJ-1 protects DA neurons against mitochondrial dysfunction and oxidative stress through an autophagic pathway. Cultured DA cells (MN9D) overexpressing DJ-1 were treated with the mitochondrial complex I inhibitor, rotenone. In addition, rotenone was injected into the left substantia nigra of rats 4 weeks after injection with a DJ-1 expression vector. Overexpression of DJ-1 protected MN9D cells against apoptosis, significantly enhanced the survival of nigral DA neurons after rotenone treatment in vivo, and rescued rat behavioral abnormalities. Overexpression of DJ-1 enhanced rotenone-evoked expression of the autophagic markers, beclin-1 and LC3II, while transmission electron microscopy and confocal imaging revealed that the ultrastructural signs of autophagy were increased by DJ-1. The neuroprotective effects of DJ-1 were blocked by phosphoinositol 3‐kinase and the autophagy inhibitor, 3-methyladenine, and by the ERK pathway inhibitor, U0126. Confocal imaging revealed that the size of p62-positive puncta decreased significantly in DJ-1 overexpression of MN9D cells 12 h after rotenone treatment, suggesting that DJ-1 reveals the ability to clear aggregated p62 associated with PD. Factors that control autophagy, including DJ-1, may inhibit rotenone-induced apoptosis and present novel targets for therapeutic intervention in PD.  相似文献   

3.
Exposure of albino rats to continuous light of low intensity (350–700 lux) for 4 months produces massive degeneration of the photoreceptor segments and cell bodies of the outer nuclear layer of the retina. Only a few heterochromatic, receptor cell nuclei remain, and no photoreceptor segments are present. On the other hand, the inner layers of these retinas remain morphologically intact. The inner nuclear layer of the normal rat retina contains a group of amacrine cells which contain the putative neurotransmitter, dopamine (DA). Short term exposure to light (30 or 60 min) markedly stimulates the rate of DA turnover in these cells in normal, previously dark-adapted rats. Such enhancement of the rate of neurotransmitter turnover in the brain has been correlated with an increase in nerve impulse activity. The present study was undertaken to determine if the dopaminergic amacrine cells of the inner nuclear layer were still responsive to light in the retinas of rats whose photoreceptors were previously destroyed by long term exposure to continuous illumination. One week before sacrifice, the animals which had been housed in continuous light for 4 months were returned to normal 14 hr light: 10 hr dark lighting conditions. At the end of this time they and a group of control rats which had been housed in cyclic lighting conditions for the entire 4 months were dark adapted for approximately 15 hr. Then the rate of retinal DA turnover was estimated from the depletion of DA following inhibition of DA synthesis by α methyl para-tyrosine. The turnover of DA in the dark-adapted retinas of the control rats and of experimental rats with photoreceptor degeneration was dramatically enhanced 2–4 fold by short term exposure (up to 1 hr) to light. Since rats are nocturnal and avoid light, we tested the light aversion of another group of rats which had been exposed to light for 4 months and then returned to cyclic lighting conditions for one week. These rats and control animals which had been maintained in cyclic lighting conditions for 4 months both chose the dark side of a light-dark box over 80% of the time. This behavior of the rats with retinal degeneration was taken as a crude indication of their continued ability to detect light. The light-induced increase in DA activity in retinas with photoreceptor degeneration may play a role in the continued ability of these rats to perceive light.  相似文献   

4.
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopaminergic neurons in the nigrostriatal pathway. Previous studies have demonstrated that chronic systemic exposure of Lewis rats to rotenone produced many features of PD, and cerebral tauopathy was also detected in the case of severe weight loss. The present study was designed to assess the neurotoxicity of rotenone after daily oral administration for 28 days at several doses in C57BL/6 mice. In addition, we examined the protective effects of 4-phenylbutyrate (4-PBA) on nigral dopamine (DA) neurons in rotenone-treated mice. 4-PBA was injected intraperitoneally daily 30 min before each oral administration of rotenone. Chronic oral administration of rotenone at high doses induced specific nigrostriatal DA neurodegeneration, motor deficits and the up-regulation of alpha-synuclein in the surviving DA neurons. In contrast to the Lewis rat model, cerebral tauopathy was not detected in this mouse model. 4-PBA inhibited rotenone-induced neuronal death and decreased the protein level of alpha-synuclein. These results suggest that this rotenone mouse model may be useful for understanding the mechanism of DA neurodegeneration in PD, and that 4-PBA has a neuroprotective effect in the treatment of PD.  相似文献   

5.
Epinephrine: A Potential Neurotransmitter in Retina   总被引:17,自引:13,他引:4  
Abstract: Dopamine (DA), norepinephrine (NE), and epinephrine (EPI) are present in rat retina. DA is the major catecholamine, whereas NE and EPI represent ∼5% of the DA content. DA is contained in a subpopulation of amacrine cells and has been the subject of numerous studies. We investigated the origin and properties of NE and EPI in retina. Following superior cervical ganglionectomy, there was a decrease in NE content, but no decrease in EPI or phenylethanolamine- N -methyltransferase (PNMT) activity. PNMT in retina has many of the substrate-specificity and inhibitor-sensitivity characteristics of other tissues. Enzyme activity is enhanced in newborn rats by treatment with dexamethasone. Exposure to a lighted environment increases retinal EPI in normal and superior cervical ganglionectomized rats. EPI content increased for more than 2 h in a lighted environment. We conclude that most of the NE is contained within the sympathetic neurons that innervate the eye from the superior cervical ganglion, whereas EPI is contained in retinal elements that are responsive to photic stimulation.  相似文献   

6.
We evaluated the neuroprotective effects of β‐methylphenylalanine in an experimental model of rotenone‐induced Parkinson's disease (PD) in SH‐SY5Y cells and rats. Cells were pre‐treated with rotenone (2.5 µg/mL) for 24 hours followed by β‐methylphenylalanine (1, 10 and 100 mg/L) for 72 hours. Cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), mitochondrial fragmentation, apoptosis, and mRNA and protein levels of tyrosine hydroxylase were determined. In a rat model of PD, dopamine (DA) and 3,4‐dihydroxyphenylacetic acid (DOPAC) levels, bradykinesia and tyrosine hydroxylase expression were determined. In rotenone–pre‐treated cells, β‐methylphenylalanine significantly increased cell viability and MMP, whereas ROS levels, apoptosis and fragmented mitochondria were reduced. β‐Methylphenylalanine significantly increased the mRNA and protein levels of tyrosine hydroxylase in SH‐SY5Y cells. In the rotenone‐induced rat model of PD, oral administration of β‐methylphenylalanine recovered DA and DOPAC levels and bradykinesia. β‐Methylphenylalanine significantly increased the protein expression of tyrosine hydroxylase in the striatum and substantia nigra of rats. In addition, in silico molecular docking confirmed binding between tyrosine hydroxylase and β‐methylphenylalanine. Our experimental results show neuroprotective effects of β‐methylphenylalanine via the recovery of mitochondrial damage and protection against the depletion of tyrosine hydroxylase. We propose that β‐methylphenylalanine may be useful in the treatment of PD.  相似文献   

7.
Dopamine (DA)-containing neurons of the rat retina are apparently activated transsynaptically by photic stimulation. Exposure of dark-adapted rats to light increases retinal DA biosynthesis and metabolism. Associated with the light-evoked increase of DA biosynthesis is a rapid activation of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. The activation of TH is characterized by an increased affinity of the enzyme for the pteridine cofactor. Because TH in dark-adapted retinas is apparently not saturated with cofactor, the light-evoked increase of affinity is probably responsible for the observed stimulation of DA biosynthesis. Cyclic AMP (cAMP)-dependent protein phosphorylation in vitro activates TH extracted from dark-adapted retinas, and phosphorylation-induced TH activation is very similar and not additive with light-evoked activation of the enzyme. Incubation of viable cell suspensions of dissociated retinas with 8-bromo cAMP also activates TH, which indicates the availability of sufficient cAMP-dependent protein kinase in the proper subcellular compartment to regulate the enzyme in situ. The DA-containing neurons of the rat retina are tonically inhibited in darkness, and evidence is presented that this tonic inhibition involves direct synaptic input to the DA neurons from gamma-aminobutyric acid-containing amacrine cells. The DA-containing neurons are also subject to feedback inhibition through DA receptors, and to modulation by alpha 2-adrenergic receptors.  相似文献   

8.
In the mouse retina, dopaminergic amacrine (DA) cells synthesize both dopamine and GABA. Both transmitters are released extrasynaptically and act on neighbouring and distant retinal neurons by volume transmission. In simultaneous recordings of dopamine and GABA release from isolated perikarya of DA cells, a proportion of the events of dopamine and GABA exocytosis were simultaneous, suggesting co-release. In addition, DA cells establish GABAergic synapses onto AII amacrine cells, the neurons that transfer rod bipolar signals to cone bipolars. GABAA but not dopamine receptors are clustered in the postsynaptic membrane. Therefore, dopamine, irrespective of its site of release—synaptic or extrasynaptic—exclusively acts by volume transmission. Dopamine is released upon illumination and sets the gain of retinal neurons for vision in bright light. The GABA released at DA cells'' synapses probably prevents signals from the saturated rods from entering the cone pathway when the dark-adapted retina is exposed to bright illumination. The GABA released extrasynaptically by DA and other amacrine cells may set a ‘GABAergic tone’ in the inner plexiform layer and thus counteract the effects of a spillover of glutamate released at the bipolar cell synapses of adjacent OFF and ON strata, thus preserving segregation of signals between ON and OFF pathways.  相似文献   

9.
Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF), which is the neurotrophic factor that influences the plasticity of synapses in the central nervous system. We sought to determine whether BDNF influences the network of dopaminergic amacrine cells in the axotomized rat retina, by immunocytochemistry with an anti-tyrosine hydroxylase (TH) antiserum. In the control retina, we found two types of TH-immunoreactive amacrine cells, type I and type II, in the inner nuclear layer adjacent to the inner plexiform layer (IPL). The type I amacrine cell varicosities formed ring-like structures in contact with AII amacrine cell somata in stratum 1 of the IPL. In the axotomized retinas, TH-labeled processes formed loose networks of fibers, unlike the dense networks in the control retina, and the ring-like structures were disrupted. In the axotomized retinas treated with BDNF, strong TH-immunoreactive varicosities were present in stratum 1 of the IPL and formed ring-like structures. Our data suggest that BDNF affects the expression of TH immunoreactivity in the axotomized rat retina and may therefore influence the retinal dopaminergic system. E.-J. Lee and M.-C. Song contributed equally to this work. This work was supported by Korea Research Foundation (grant no. E00004, 2004).  相似文献   

10.
Abstract: Light stimulates tyrosine hydroxylase activity and dopamine (DA) turnover in the dark-adapted rat retina in vivo . The DA neurons are located in the amacrine cell layer and form numerous connections with other cells in this layer. Conceivably, alterations in neurotransmission in these other cells could influence the light-responding parameters of the DA neurons. Evidence presented in this paper shows that in vivo pharmacologic manipulation of the GABA system modifies the light-induced change in DA turnover. The decline in DA content following inhibition of tyrosine hydroxylase by α-methyl-p-tyrosine (αMPT, 250 mg/kg, i.p.) was used to estimate DA turnover. The decline in DA content in retinas of the μMPT-treated rats was significantly enhanced by light exposure for 30 or 60 min. Two doses of the potent GABA agonist muscimol (13.2 or 26.4 μmol/kg, i.v., cumulative) significantly inhibited the light-induced increase in DA turnover (p <.001). This action was selective for GABA because the GABA antagonist picrotoxinin (1.88 mg/kg, i.v., cumulative) reversed the muscimol-mediated blockade of the light-induced stimulation. In fact, DA turnover in the presence of light, muscimol, and picrotoxinin was not different from DA turnover in light alone. These data suggest that there is either a direct or indirect GABAergic input to the DA system of the rat retina. Current studies are aimed at clarifying the physiological role, if any, that this input plays in the normal light response of the retinal DA system.  相似文献   

11.
Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc), which ultimately results in parkinsonism, but the molecular mechanisms of selective degeneration of nigral DA neurons are not fully understood. In the present study, we investigated the induction of p38MAPK/p53 and Bax in SNpc of Lewis rats after chronic treatment with rotenone and the contribution of Bax to rotenone-induced apoptotic commitment of differentiated PC12 cells. Lewis rats were subcutaneously treated with rotenone (1.5 mg/kg) twice a day for 50 days and the loss of tyrosine hydroxylase (THase), motor function impairment, and expression of p38MAPK, P-p38MAPK, p53, and Bax were assessed. After differentiated PC cells were treated with rotenone (500 nM) for 6–36 h, protein levels of p38MAPK and P-p38MAPK, p53 nuclear translocation, Bax induction and cell death were measured. The results showed that rotenone administration significantly reduced motor activity and caused a loss of THase immunoreactivity in SNpc of Lewis rats. The degeneration of nigral DA neurons was accompanied by the increases in p38MAPK, P-p38MAPK, p53, and Bax protein levels. In cultured PC12 cells, rotenone also induced an upregulation of p38MAPK, P-p38MAPK, p53 and Bax. Pharmacological inhibition of p38MAPK with SB203580 (25 μM) blunted rotenone-induced cell apoptosis. Treatment with SB203580 prevented the p53 nuclear translocation and upregulation of Bax. Inhibition of p53 with pifthrin-alpha or Bax with siRNAs significantly reduced rotenone-induced Bax induction and apoptotic cell death. These results suggest that the p38MAPK/p53-dependent induction of Bax contributes to rotenone’s neurotoxicity in PD models.  相似文献   

12.
Parkinson's disease (PD) has been linked to mitochondrial dysfunction and pesticide exposure. The pesticide rotenone (ROT) inhibits complex I and reproduces features of PD in animal models, suggesting that environmental agents that inhibit complex I may contribute to PD. We have previously demonstrated that ROT toxicity is dependent upon complex I inhibition and that oxidative stress is the primary mechanism of toxicity. In this study, we examined the in vitro toxicity and mechanism of action of several putative complex I inhibitors that are commonly used as pesticides. The rank order of toxicity of pesticides to neuroblastoma cells was pyridaben > rotenone > fenpyroximate > fenazaquin > tebunfenpyrad. A similar order of potency was observed for reduction of ATP levels and competition for (3)H-dihydrorotenone (DHR) binding to complex I, with the exception of pyridaben (PYR). Neuroblastoma cells stably expressing the ROT-insensitive NADH dehydrogenase of Saccharomyces cerevisiae (NDI1) were resistant to these pesticides, demonstrating the requirement of complex I inhibition for toxicity. We further found that PYR was a more potent inhibitor of mitochondrial respiration and caused more oxidative damage than ROT. The oxidative damage could be attenuated by NDI1 or by the antioxidants alpha-tocopherol and coenzyme Q(10). PYR was also highly toxic to midbrain organotypic slices. These data demonstrate that, in addition to ROT, several commercially used pesticides directly inhibit complex I, cause oxidative damage, and suggest that further study is warranted into environmental agents that inhibit complex I for their potential role in PD.  相似文献   

13.
Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.  相似文献   

14.
Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca(2+) elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca(2+) elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca(2+) signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells.  相似文献   

15.
Emerging evidence supports an important role for caspases in neuronal death following ischemia-reperfusion injury. This study assessed whether cell specific caspases participate in neuronal degeneration and whether caspase inhibition provides neuroprotection following transient retinal ischemia. We utilized a model of transient global retinal ischemia. The spatial and temporal pattern of the active forms of caspase 1, 2 and 3 expression was determined in retinal neurons following ischemic injury. Double-labeling with cell-specific markers identified which cells were expressing different caspases. In separate experiments, animals received various caspase inhibitors before the induction of ischemia. Sixty minutes of ischemia resulted in a delayed, selective neuronal death of the inner retinal layers at 7 days. Expression of caspase 1 was not detected at any time point. Maximal expression of caspase 2 was found at 24 h primarily in the inner nuclear and ganglion cell layers of the retina and localized to ganglion and amacrine neurons. Caspase 3 also peaked at 24 h in both the inner nuclear and outer nuclear layers and was predominantly expressed in photoreceptor cells and to a lesser extent in amacrine neurons. The pan caspase inhibitor, Boc-aspartyl fmk, or an antisense oligonucleotide inhibitor of caspase 2 led to significant histopathologic and functional improvement (electroretinogram) at 7 days. No protection was found with the caspase 1 selective inhibitor, Y-vad fmk. These observations suggest that ischemia-reperfusion injury activates different caspases depending on the neuronal phenotype in the retina and caspase inhibition leads to both histologic preservation and functional improvement. Caspases 2 and 3 may act in parallel in amacrine neurons following ischemia-reperfusion. These results in the retina may shed light on differential caspase specificity in global cerebral ischemia.  相似文献   

16.
Rotenone is a widely used pesticide that induces Parkinson’s disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.  相似文献   

17.
Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression.  相似文献   

18.
Abdelalim EM  Masuda C  Tooyama I 《Peptides》2008,29(4):622-628
Recently, the natriuretic peptides were detected in the cholinergic and dopaminergic amacrine cells of the retina. We performed immunofluorescence labeling of rat retinal sections to examine the immunoreactivity of natriuretic peptide-activated guanylate cyclases (NPR-A and NPR-B) in the rat retina, in particular whether they were localized to dopaminergic and cholinergic amacrine cells. NPR-A and NPR-B immunoreactivity was detected in several layers of the retina including amacrine cells. In amacrine cells, both NPR-A and NPR-B were co-localized with tyrosine hydroxylase, a marker of dopaminergic cells. NPR-B, but not NPR-A, was localized to amacrine cells expressing choline acetyltransferase (ChAT), a marker of cholinergic cells. These findings suggest that natriuretic peptides have different regulatory systems in dopaminergic and cholinergic amacrine cells in rat retina.  相似文献   

19.
A clinically-related animal model of Parkinson''s disease (PD) may enable the elucidation of the etiology of the disease and assist the development of medications. However, none of the current neurotoxin-based models recapitulates the main clinical features of the disease or the pathological hallmarks, such as dopamine (DA) neuron specificity of degeneration and Lewy body formation, which limits the use of these models in PD research. To overcome these limitations, we developed a rat model by stereotaxically (ST) infusing small doses of the mitochondrial complex-I inhibitor, rotenone, into two brain sites: the right ventral tegmental area and the substantia nigra. Four weeks after ST rotenone administration, tyrosine hydroxylase (TH) immunoreactivity in the infusion side decreased by 43.7%, in contrast to a 75.8% decrease observed in rats treated systemically with rotenone (SYS). The rotenone infusion also reduced the DA content, the glutathione and superoxide dismutase activities, and induced alpha-synuclein expression, when compared to the contralateral side. This ST model displays neither peripheral toxicity or mortality and has a high success rate. This rotenone-based ST model thus recapitulates the slow and specific loss of DA neurons and better mimics the clinical features of idiopathic PD, representing a reliable and more clinically-related model for PD research.  相似文献   

20.
Kainic acid, an excitotoxic agent to the retina as well as to neuronal cell bodies in the brain, was administered intraocularly to rats in order to study the sensitivity of phenylethanolamine-N-Methyltransferase (PNMT) containing amacrine cells to this agent. Results show that these cells are very sensitive to the toxic effects of kainate. A dose of 5 nmoles caused a significant reduction in retinal PNMT activity. Higher doses further depleted enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号