首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TCE degradation in a methanotrophic attached-film bioreactor   总被引:1,自引:0,他引:1  
Trichloroethene was degraded in expanded-bed bioreactors operated with mixed-culture methanotrophic attached films. Biomass concentrations of 8 to 75 g volatile solids (VS) per liter static bed (L(sb)) were observed. Batch TCE degradation rates at 35 degrees C followed the Michaelis-Menten model, and a maximum TCE degradation rate (q(max)) of 10.6 mg TCE/gVS . day and a half velocity coefficient (K(S)) of 2.8 mg TCE/L were predicted. Continuous-flow kinetics also followed the Michaelis-Menten model, but other parameters may be limiting, such as dissolved copper and dissolved methane-q(max) and K(S) were 2.9 mg TCE/gVS . day and 1.5 mg TCE/L, respectively, at low copper concentrations (0.003 to 0.006 mg Cu/L). The maximum rates decreased substantially with small increases in dissolved copper. Methane consumption during continuous-flow operation varied from 23 to 1200 g CH(4)/g TCE degraded. Increasing the influent dissolved methane concentration from 0.01 mg/L to 5.4 mg/L reduced the TCE degradation rate by nearly an order of magnitude at 21 degrees C. Exposure of biofilms to 1.4 mg/L tetrachloroethene (PCE) at 35 degrees C resulted in the loss of methane utilization ability. Tests with methanotrophs grown on granular activated carbon indicated that lower effluent TCE concentrations could be obtained. The low efficiencies of TCE removal and low degradation rates obtained at 35 degrees C suggest that additional improvements will be necessary to make methanotrophic TCE treatment attractive. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
BothPseudomonas putida F1 and a mixed culture were used to study TCE degradation in continuous culture under aerobic, non-methanotrophic conditions. TCE mass balance studies were performed with continuous culture reactors to determine the total percent removed in the reactors, and to quantify the percent removed by air stripping and biodegradation. Adsorption of TCE to biomass was assumed to be negligible. This research demonstrated the feasibility of treating TCE-contaminated water under aerobic, non-methanotrophic conditions with a mixed-culture, continuous-flow system.Initially glucose and acetate were fed as primary substrates. Pnenol, which has been shown to induce TCE-degrading enzymes, was fed at a much lower concentration (20mg/L). Little degradation of TCE was observed when acetate and glucose were the primary substrates. After omitting glucose and acetate from the feed and increasing the phenol concentration to 50mg/L, TCE biotransformation was observed at a significant level (46%). When the phenol concentration in the feed was increased to 420mg/L, 85% of the incoming TCE was estimated to have been biodegraded. Under the same conditions, phenol utilization by the mixed culture was greater than that ofP. putida F1, and TCE degradation by the mixed culture (85%) exceeded that ofP. putida F1 (55%). The estimated percent-of-TCE biodegraded by the mixed culture was consistently greater than 80% when phenol was fed at 420mg/L. Biodegradation of TCE was also observed in mixed-culture, batch experiments.  相似文献   

3.
Experimental bioreactors operated as recirculated closed systems were inoculated with bacterial cultures that utilized methane, propane, and tryptone-yeast extract as aerobic carbon and energy sources and degraded trichloroethylene (TCE). Up to 95% removal of TCE was observed after 5 days of incubation. Uninoculated bioreactors inhibited with 0.5% Formalin and 0.2% sodium azide retained greater than 95% of their TCE after 20 days. Each bioreactor consisted of an expanded-bed column through which the liquid phase was recirculated and a gas recharge column which allowed direct headspace sampling. Pulses of TCE (20 mg/liter) were added to bioreactors, and gas chromatography was used to monitor TCE, propane, methane, and carbon dioxide. Pulsed feeding of methane and propane with air resulted in 1 mol of TCE degraded per 55 mol of substrate utilized. Perturbation studies revealed that pH shifts from 7.2 to 7.5 decreased TCE degradation by 85%. The bioreactors recovered to baseline activities within 1 day after the pH returned to neutrality.  相似文献   

4.
Cometabolic degradation of trichloroethylene in a bubble column bioscrubber   总被引:1,自引:0,他引:1  
A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s(-1) and TCE gas phase loads between 0.07 and 0.40 mg L(-1) Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. (c) 1995 John Wiley & Sons Inc.  相似文献   

5.
Subsurface microorganisms from McClellan Air Force Base (AFB) were grown in batch aquifer microcosms on methane, propane, and butane to evaluate the potential for aerobic trichloroethylene (TCE) cometabolism. Microorganisms stimulated on all three substrates indicated the existence of a subsurface microbial community capable of utilizing alkanes as growth substrates. Initial growth substrate utilization lag periods of 2 weeks for methane and 3 weeks for propane and butane were observed. Methane- and propane-utilizers were active toward TCE cometabolism, whereas butane-utilizers showed no ability to transform TCE. Gradually increasing TCE concentrations were effectively transformed with uniform additions of methane and propane for up to 1 year. TCE was transformed most rapidly during active methane utilization, and continued at a slower rate for approximately 1 week after methane was consumed. Propane microcosms maintained first-order TCE transformation for up to 4 weeks after propane was consumed. The microbial communities remained active toward primary substrate utilization as the TCE concentration was gradually increased. Both methane- and propane-utilizers showed positive correlations between TCE transformation rates and primary substrate utilization rates. Observed maximum TCE transformation yields were 0.068 g TCE/g methane and 0.048 g TCE/g propane. The methane-utilizers also transformed chloroform (CF) but not 1,1,1-trichloroethane (1,1,1-TCA). Propane-utilizers transformed both CF and 1,1,1-TCA, indicating they were better suited for cometabolizing chlorinated aliphatic hydrocarbon mixtures in the McClellan AFB subsurface.  相似文献   

6.
Agricultural by-products represent a considerable quantity of harvested commodity crops. The use of by-products as precursors for the production of widely used adsorbents, such as activated carbons, may impart a value-added component of the overall biomass harvested. Our objective in this paper is to show that flax shive and cotton gin waste can serve as a precursor for activated carbon that can be used for adsorption of trichloroethylene (TCE) from both the liquid and gas phases. Testing was conducted on carbon activated with phosphoric acid or steam. The results show that activated carbon made from flax shive performed better than select commercial activated carbons, especially at higher TCE concentrations. The activation method employed had little effect on TCE adsorption in gas or vapor phase studies but liquid phase studies suggested that steam activation is slightly better than phosphoric acid activation. As expected, the capacity for the activated carbons depended on the fluid phase equilibrium concentration. At a fluid concentration of 2 mg of TCE/L of fluid, the capacity of the steam activated carbon made from flax shive was similar at 64 and 80 mg TCE/g of carbon for the vapor and liquid phases, respectively. Preliminary cost estimates suggest that the production costs of such carbons are $1.50 to $8.90 per kg, depending on activation method and precursor material; steam activation was significantly less expensive than phosphoric acid activation.  相似文献   

7.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

8.
The rates of methane utilization and trichloroethylene (TCE) cometabolism by a methanotrophic mixed culture were characterized in batch and pseudo-steady-state studies. Procedures for determination of the rate coefficients and their uncertainties by fitting a numerical model to experimental data are described. The model consisted of a system of differential equations for the rates of Monod kinetics, cell growth on methane and inactivation due to TCE transformation product toxicity, gas/liquid mass transfer of methane and TCE, and the rate of passive losses of TCE. The maximum specific rate of methane utilization (k(CH(4) )) was determined by fitting the numerical model to batch experimental data, with the initial concentration of active methane-oxidizing cells (X(0) (a)) also used as a model fitting parameter. The best estimate of k(CH(4) ) was 2.2 g CH(4)/g cells-d with excess copper available, with a single-parameter 95% confidence interval of 2.0-2.4 mg/mg-d. The joint 95% confidence region for k(CH(4) ) and X(0) (a) is presented graphically. The half-velocity coefficient (K(S,CH(4) )) was 0.07 mg CH(4)/L with excess copper available and 0.47 mg CH(4)/L under copper limitation, with 95% confidence intervals of 0.02-0.11 and 0.35-0.59 mg/L, respectively. Unique values of the TCE rate coefficients k(TCE) and K(S,TCE) could not be determined because they were found to be highly correlated in the model fitting analysis. However, the ratio k(TCE)/K(S,TCE) and the TCE transformation capacity (T(C)) were well defined, with values of 0.35 L/mg-day and 0.21 g TCE/g active cells, respectively, for cells transforming TCE in the absence of methane or supplemental formate. The single-parameter 95% confidence intervals for k(TCE)/K(S,TCE) and T(C) were 0.27-0.43 L/mg-d and 0.18-0.24 g TCE/g active cells, respectively. The joint 95% confidence regions for k(TCE)/K(S,TCE) and T(C) are presented graphically. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 320-331, 1997.  相似文献   

9.
The cometabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 (strain ATCC 700007) at different concentrations was studied in single- and two-phase systems using 2-undecanone as the second organic phase. Toluene vapors were used as the primary growth substrate for Pseudomonas putida F1. The effects of the biomass concentration and the phase ratio on the biodegradation process were investigated. The best biomass concentration and the most suitable phase ratio were found to be 0.462 and 0.025 g/L (vorg/vaq), respectively. In the single-phase system, 36.5 mg/L TCE was degraded completely in 15 hours and only 78% of 55 mg/L TCE was degraded in 27 hours, while in the two-phase system 55 mg/L TCE was degraded completely in 14 hours. The use of the two-phase system not only decreased the biodegradation time of TCE but also prevented the inhibition effect of high concentrations of TCE on the microbial biomass.  相似文献   

10.
As measured by the toluene-induced bioluminescent response of Pseudomonas putida TVA8 in batch experiments, toluene dioxygenase (Tod) enzyme activities are dependent on toluene concentration between 0 and 30 mg/L. To provide a measure of the Tod activity for use in Michaelis-Menten competitive-inhibition kinetics, a correlation between toluene concentration and induced Tod activity as measured by an induced bioluminescent response of P. putida TVA8 is presented as a nondimensional Tod activity parameter. A packed-bed, radial-flow bioreactor (RFB) using the bioreporter P. putida TVA8A serves as the model system for studying the effect of the enzyme activity parameter on model predictions of vapor-phase toluene oxidation and trichloroethylene (TCE) cometabolism. Mass balances were performed on a differential section of the RFB to describe the radial transport of vapor-phase toluene and TCE through a bulk gas phase and the concomitant biological reaction in a stationary biofilm phase. The finite-element Galerkin weak-statement formulation with first-order basis functions was used to find the optimum solution to the highly nonlinear, coupled equations. For this RFB system with toluene concentrations less than 1 mg/L in the bulk gas phase, the Tod activity parameter enables accurate predictions of steady-state TCE degradation rate (0.27 microg TCE/min).  相似文献   

11.
Cometabolic degradation of TCE by toluene-degrading bacteria has the potential for being a cost-effective bioremediation technology. However, the application of toluene may pose environmental problems. In this study, several plant essential oils and their components were examined as alternative inducer for TCE cometabolic degradation in a toluene-degrading bacterium, Rhodococcus sp. L4. Using the initial TCE concentration of 80 muM, lemon and lemongrass oil-grown cells were capable of 20 +/- 6% and 27 +/- 8% TCE degradation, which were lower than that of toluene-grown cells (57 +/- 5%). The ability of TCE degradation increased to 36 +/- 6% when the bacterium was induced with cumin oil. The induction of TCE-degrading enzymes was suggested to be due to the presence of citral, cumin aldehyde, cumene, and limonene in these essential oils. In particular, the efficiency of cumin aldehyde and cumene as inducers for TCE cometabolic degradation was similar to toluene. TCE transformation capacities (T (c)) for these induced cells were between 9.4 and 15.1 mug of TCE mg cells(-1), which were similar to the known toluene, phenol, propane or ammonia degraders. Since these plant essential oils are abundant and considered non-toxic to humans, they may be applied to stimulate TCE degradation in the environment.  相似文献   

12.
Experiments in a laboratory chamber were used to investigate the influence of alfalfa plants on the fate and transport of trichloroethylene (TCE) fed at a concentration of 200 μl/L (~290 mg/L) in the entering groundwater. The dimensions of the chamber were 180 cm in axial length, 35 cm in depth and 10 cm in width. Concentrations of TCE were monitored in the aqueous and gas phases. Evapotranspirational fluxes of TCE from the soil to the headspace of the chamber were also measured. TCE concentration in the solid phase was measured as a function of depth. Mathematical modeling of the fate of TCE was developed assuming rate-independent physical equilibrium partitioning between solid, aqueous, and gas phases. The model included volatilization across a thin atmospheric boundary layer near soil surface. Numerical results were first validated with analytical results for simple cases and then compared with experimental data in the chamber. Results indicated that the water content and air content distributions significantly impact the transport and concentration of TCE in soils.  相似文献   

13.
甲烷利用细菌降解三氯乙烯的研究   总被引:5,自引:0,他引:5  
GYJ3菌株细胞微细结构的电镜观察结果表明:它具有Ⅱ型甲烷利用细菌的特征,应归属于Ⅱ型菌。考察了Cu2+浓度、培养气相中甲烷浓度对菌株细胞中甲烷单加氧酶(EC1.14.13.25,简称MMO)活性的影响。结果表明,培养液中Cu2+浓度为1.5μmol/L,培养气相中甲烷:空气比为2∶1时,可溶性甲烷单加氧酶占细胞中MMO总量的95%。研究了GYJ3菌株细胞悬浮液降解三氯乙烯过程。实验结果表明,GYJ3菌株能够降解不同浓度的三氯乙烯,较高浓度的三氯乙烯对降解反应没有明最的抑制作用。加入甲酸盐作为电子给体能够提高三氯乙烯降解反应速率。实验中观察到GYJ3菌株降解三氯乙烯过程中反应速率随着反应的进行而下降,在三氯乙烯降解过程中三氯乙烯氧化产物是导致细胞失活的主要原因。实验室中测定了GYJ3菌株单位重量细胞降解三氯乙烯极限量,它可作为评价细菌降解三氯乙烯能力的重要指标。  相似文献   

14.
Due to its toxicity and persistence in the environment, trichloroethylene (TCE) has become a major soil and groundwater contaminant in many countries. A group of aliphatic- and aromatic-degrading bacteria expressing nonspecific oxygenases have been reported to transform TCE through aerobic cometabolism in the presence of primary substrate such as methane, ammonia, propane, phenol, toluene or cumene. This paper reviews the fundamentals and results of TCE cometabolism from laboratory and field studies. The limitations associated with TCE cometabolism including the causes and effects of substrate and/or inducer utilization rate and depletion, enzyme inhibition and inactivation, and cytotoxicity during TCE oxidation among various TCE-degrading bacteria and enzymes are discussed. In addition, the potential strategies e.g. addition of primary substrate/inducer or external energy substrate, use of a two-stage reactor and application of cell immobilization for sustained TCE degradation are highlighted. The review summarizes important information on TCE cometabolism, which is necessary for developing efficient TCE bioremediation approaches.  相似文献   

15.
Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation byPseudomonas putida F1 at 25°C decreased exponentially with time, without toluene feeding to a biofilter column (11 cm I.D.×95 cm height). The rate of decrease was 2.5 times faster at a TCE concentration of 970 μg/L compared to a TCE concentration of 110 μg/L. The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene (2,200 μg/L) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by 43% when the TCE removal efficiency at the time of toluene feeding was 58%. The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expression. A longer duration (1.4∼2.4 times) of toluene supply increased the recovery of the TCE removal efficieny by 20% for the same toluene load.  相似文献   

16.
Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene in the presence of TCE. During batch growth with propene and TCE, the TCE was not degraded before most of the propene had been consumed. Continuous degradation of TCE in a chemostat culture of strain Py2 growing with propene was observed with TCE concentrations up to 206 microns in the growth medium without washout of the fermentor occurring. At this TCE concentration the specific degradation rate was 1.5 nmol/min/mg of biomass. The total amount of TCE that could be degraded during simultaneous growth on propene depended on the TCE concentration and ranged from 0.03 to 0.34g of TCE per g of biomass. The biomass yield on propene was not affected by the cometabolic degradation of TCE.  相似文献   

17.
在确定了最适接种量和外植体细胞生理时间的基础上,研究了在不同起始磷浓度下,霍山石斛类原球茎生长、碳、氮消耗和多糖积累的动力学特性。以生长30d的类原球茎为材料,在接种量为100g/L时,类原球茎生长的最佳起始磷浓度为2.5mmol/L,培养36d时,类原球茎鲜重达496.5g/L。动力学分析表明,磷是霍山石斛类原球茎生长的限制性因素,胞内磷的积累水平与细胞生长具有相关性,2.5mmol/L的磷酸盐有利于碳、氮等营养物质的吸收;而多糖积累的最佳起始磷浓度为0.312mmol/L,培养36d时,其产量为2.22g/L。  相似文献   

18.
Two Rhodococcus strains which were isolated from a trichloroethylene (TCE)-degrading bacterial mixture and Rhodococcus rhodochrous ATCC 21197 mineralized vinyl chloride (VC) and TCE. Greater than 99.9% of a 1-mg/liter concentration of VC was degraded by cell suspensions. [1,2-14C]VC was degraded by cell suspensions, with the production of greater than 66% 14CO2 and 20% 14C-aqueous phase products and incorporation of 10% of the 14C into the biomass. Cultures that utilized propane as a substrate were able to mineralize greater than 28% of [1,2-14C]TCE to 14CO2, with approximately 40% appearing in 14C-aqueous phase products and another 10% of 14C incorporated into the biomass. VC degradation was oxygen dependent and occurred at a pH range of 5 to 10 and temperatures of 4 to 35°C. Cell suspensions degraded up to 5 mg of TCE per liter and up to 40 mg of VC per liter. Propane competitively inhibited TCE degradation. Resting cell suspensions also degraded other chlorinated aliphatic hydrocarbons, such as chloroform, 1,1-dichloroethylene, and 1,1,1-trichloroethane. The isolates degraded a mixture of aromatic and chlorinated aliphatic solvents and utilized benzene, toluene, sodium benzoate, naphthalene, biphenyl, and n-alkanes ranging in size from propane to hexadecane as carbon and energy sources. The environmental isolates appeared more catabolically versatile than R. rhodochrous ATCC 21197. The data report that environmental isolates of Rhodococcus species and R. rhodochrous ATCC 21197 have the potential to degrade TCE and VC in addition to a variety of aromatic and chlorinated aliphatic compounds either individually or in mixtures.  相似文献   

19.
The ability of the Alcaligenes faecalis 2 strain to utilize acrylamide and acrylic acid upon cultivation with these compounds as the only sources of carbon and energy has been investigated. Complete utilization of the acrylic acid present in the medium at concentrations below 0.113 g/L was observed by cultivation day 5, at a concentration of 0.225 g/L by day 7, and at a concentration of 0.45 g/L by day 17. Complete utilization of the acrylamide present in the medium at concentrations below 0.4 g/L was observed by day 5, at a concentration of 0.9 g/L by day 7, and at a concentration of 1.8 g/L by day 20. Importantly, bacterial growth did not start before complete transformation of acrylamide into acrylic acid. The rate of acrylamide transformation by growing bacteria and a cell suspension in the stationary growth phase amounted to 12.5 mg/L h at a cell concentration of 610 mg/L and 300 mg/L h, at a concentration of 1500 mg/L. A. faecalis 2 cells immobilized on BVV-22 basalt fibers and Carbopon-B-aktiv at concentrations of 3000 and 800 mg dry cells/L, respectively, transformed acrylamide at a rate of 1200 mg/L h.  相似文献   

20.
The cometabolic degradation of trichloroethylene (TCE) as a vapor by two aromatic-metabolizing pseudomonads was evaluated in an airlift reactor. These microorganisms were able to degrade 90 to 95% of TCE in air at concentrations at the reactor inlet of 300 to 4,000 μg/liter. Although exposure of the cells to high inlet concentrations of TCE (4 mg/liter) caused a decline in enzyme-specific activity and TCE removal efficiency, this loss in activity could be prevented or delayed by increasing the rate of cosubstrate addition. Under the appropriate operating conditions, the microorganisms were able to degrade even high concentrations of TCE and activity of the cells in the reactor could be maintained for periods of at least 2 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号