首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Background. Cell cycle regulatory proteins may be critical targets during carcinogenesis. We have previously shown that chronic H. pylori infection is associated with decreased expression of the cyclin dependent kinase inhibitor (CDI) p27kip1. Loss of p27kip1 and p16Ink4a (p16) expression, another CDI, has been reported during the progression of gastric tubular adenomas to advanced gastric cancer. The aim of the current study was to examine whether H. pylori infection also affects the expression of p16 in the gastric mucosa of H. pylori‐infected patients. Methods. p16 expression was evaluated in gastric antral biopsies by immunohistochemistry in 50 patients with nonulcer dyspepsia (n = 18 uninfected, n = 32 H. pylori infected, 24 by cagA+ strains). Adjacent sections were stained for proliferating epithelial cells (by Ki67) and for apoptotic cells (by TUNEL assay). Results. Both in H. pylori infected and uninfected patients the expression of p16 was higher in the neck and base of the gland than in the foveolar region. Epithelial staining for p16 was increased with H. pylori infection (31.3% vs. 11.1% in the foveolar region, 68.8% vs. 27.8% in the neck and 75% vs. 50% in the glandular base). There was no correlation between the expression of 16 and proliferation but there was a significant positive correlation between apoptosis and 16 immunostaining. Conclusions. The tumor suppressor gene 16 is over expressed in gastric epithelial cells of H. pylori infected patients and this is associated with an increase in apoptosis. These findings suggest a possible role for this cell cycle regulator in the increase in gastric cell turnover that is associated with H. pylori infection.  相似文献   

2.
Background: Osteopontin (OPN) is involved in the gastric cancer progression. The study validated whether OPN expressions correlate with Helicobacter pylori‐related chronic gastric inflammation and the precancerous change as intestinal metaplasia (IM). Methods: This study included 105 H. pylori‐infected patients (63 without and 42 with IM) and 29 H. pylori‐negative controls. In each subject, the gastric OPN expression intensity was evaluated by immunohistochemistry, and graded from 0 to 4 for the epithelium, lamina propria, and areas with IM, respectively. For the H. pylori‐infected subjects, the gastric inflammation was assessed by the Updated Sydney System. Forty‐nine patients received follow‐up endoscopy to assess OPN change on gastric mucosa after H. pylori eradication. The in vitro cell‐H. pylori coculture were performed to test the cell origin of OPN. Results: The H. pylori‐infected patients had higher gastric OPN expression than the noninfected controls (p < .001). For the H. pylori‐infected patients, an increased OPN expression correlated with more severe chronic gastric inflammation (p < .001) and the presence of IM (OR: 2.6, 95% CI: 1.15–5.94, p = .02). Within the same gastric bits, lamina propria expressed OPN stronger than epithelium (p < .001), suggesting OPN predominantly originates from inflammatory cells. The in vitro assay confirmed H. pylori stimulate OPN expression in the monocytes, but not in the gastric epithelial cells. After H. pylori eradication, the gastric OPN expression could be decreased only in areas without IM (p < .05). Conclusions: Increased gastric OPN expression by H. pylori infection can correlate with a more severe gastric inflammation and the presence of IM.  相似文献   

3.
4.
Background. The role of teprenone in Helicobacter pylori‐associated gastritis has yet to be determined. To investigate the effect of teprenone on inflammatory cell infiltration, and on H. pylori colonization of the gastric mucosa in H. pylori‐infected patients, we first compared the effect of teprenone with that of both histamine H2 receptor antagonists (H2‐RA) and sucralfate on the histological scores of H. pylori gastritis. We then examined its in vitro effect on H. pylori‐induced interleukin (IL)‐8 production in MKN28 gastric epithelial cells. Materials and Methods. A total of 68 patients were divided into three groups, each group undergoing a 3‐month treatment with either teprenone (150 mg/day), H2‐RA (nizatidine, 300 mg/day), or sucralfate (3 g/day). All subjects underwent endoscopic examination of the stomach before and after treatment. IL‐8 production in MKN28 gastric epithelial cells was measured by enzyme‐linked immunosorbent assay (ELISA). Results. Following treatment, the teprenone group showed a significant decrease in both neutrophil infiltration and H. pylori density of the corpus (before vs. after: 2.49 ± 0.22 vs. 2.15 ± 0.23, p = .009; 2.36 ± 0.25 vs. 2.00 ± 0.24, p = .035, respectively), with no significant differences seen in either the sucralfate or H2‐RA groups. Teprenone inhibited H. pylori‐enhanced IL‐8 production in MKN28 gastric epithelial cells in vitro, in a dose‐dependent manner. Conclusions. Teprenone may modify corpus H. pylori‐associated gastritis through its effect on neutrophil infiltration and H. pylori density, in part by its inhibition of IL‐8 production in the gastric mucosa.  相似文献   

5.
Background. Cyclooxygenase 2 (COX‐2) is an inducible enzyme that plays a key role in the synthesis of prostaglandins in response to inflammatory stimuli. It is expressed in the gastric mucosa as part of the response to infection with Helicobacter pylori. The specific interaction between H. pylori and the gastric epithelium that results in COX‐2 expression has not been identified. Methods. In order to investigate the hypothesis that lipopolysaccharide (LPS) from H. pylori plays a role in the induction of cyclooxygenase 2 in the stomach, gastric cell lines MKN‐7 and MKN‐45 were incubated with LPS from either H. pylori NCTC 11637 or Escherichia coli 055:B5. Incubation of cells with live H. pylori NCTC 11637 was also carried out as a positive control. Cells were then analysed for COX‐2 protein and mRNA and prostaglandin E2 synthesis. Results. Cyclooxygenase 2 protein and mRNA expression was induced by E. coli LPS and live H. pylori, but not by H. pylori LPS. Prostaglandin E2 synthesis increased in a dose‐dependent manner in both cell lines with E. coli but not H. pylori LPS. Conclusions. H. pylori LPS is of low biological activity when compared with E. coli LPS in its ability to induce the expression of cyclooxygenase 2 and synthesis of prostaglandin E2. This may provide one mechanism by which H. pylori minimizes the inflammatory response in the gastric mucosa, allowing chronic infection.  相似文献   

6.
Background. Two types of mucous cell are present in gastric mucosa: surface mucous cells (SMCs) and gland mucous cells (GMCs), which consist of cardiac gland cells, mucous neck cells, and pyloric gland cells. We have previously reported that the patterns of glycosylation of SMC mucins are reversibly altered by Helicobacter pylori infection. In this study, we evaluated the effects of H. pylori infection on the expression of GMC mucins in pyloric gland cells. Methods. Gastric biopsy specimens from the antrums of 30 H. pylori‐infected patients before and after eradication of H. pylori and 10 normal uninfected volunteers were examined by immunostaining for MUC6 (a core protein of GMC mucins), α1,4‐N‐acetyl‐glucosaminyl transferase (α4GnT) (the glycosyltransferase which forms GlcNAcα1‐4Galβ‐R), and GlcNAcα1‐4Galβ‐R (a GMC mucin‐specific glycan). Results. MUC6, α4GnT, and HIK1083‐reactive glycan were expressed in the cytoplasm, supranuclear region, and secretory granules in pyloric gland cells, respectively. The immunoreactivity of MUC6 and α4GnT, but not of GlcNAcα1‐4Galβ‐R, in the pyloric gland increased in H. pylori‐associated gastritis, and after the eradication of H. pylori, the increased expression of MUC6 and α4GnT in the gastric mucosa of H. pylori‐infected patients decreased to almost normal levels. This up‐regulation was correlated with the degree of inflammation. Conclusions. In addition to the synthesis of GMC mucins increasing reversibly, their metabolism or release may also increase reversibly in H. pylori‐associated gastritis. The up‐regulation of the expression of gastric GMC mucins may be involved in defense against H. pylori infection in the gastric surface mucous gel layer and on the gastric mucosa.  相似文献   

7.
8.
9.
Infection with Helicobacter pylori leads to gastritis, peptic ulcers and gastric cancer. Moreover, when the gastric mucosa is exposed to H. pylori, gastric mucosal inflammatory cytokine interleukin‐8 (Il‐8) and reactive oxygen species increase. Anthocyanins have anti‐oxidative, antibacterial and anti‐inflammatory properties. However, the effect of anthocyanins in H. pylori‐infected cells is not yet clear. In this study, therefore, the effect of anthocyanins on H. pylori‐infected human gastric epithelial cells was examined. AGS cells were pretreated with anthocyanins for 24 hrs followed by H. pylori 26695 infection for up to 24 hrs. Cell viability and ROS production were examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide and 2′,7′–dichlorofluorescein diacetate assay, respectively. Western blot analyses and RT‐PCR were performed to assess gene and protein expression, respectively. IL‐8 secretion in AGS cells was measured by ELISA. It was found that anthocyanins decrease H. pylori‐induced ROS enhancement. Anthocyanins also inhibited phosphorylation of mitogen‐activated protein kinases, translocation of nuclear factor‐kappa B and Iκβα degradation. Furthermore anthocyanins inhibited H. pylori‐induced inducible nitric oxide synthases and cyclooxygenase‐2 mRNA expression and inhibited IL‐8 production by 45.8%. Based on the above findings, anthocyanins might have an anti‐inflammatory effect in H. pylori‐infected gastric epithelial cells.  相似文献   

10.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

11.
12.
Background: Helicobacter pylori infection is associated with development of chronic inflammation and infiltration of immune cells into the gastric mucosa. As unconventional T‐lymphocytes expressing natural killer cell receptors are considered to play central roles in the immune response against infection, a study investigating their frequencies in normal and H. pylori‐infected gastric mucosa was undertaken. Materials and Methods: Flow cytometry was used to quantify T‐cells expressing the natural killer cell markers CD161, CD56, and CD94 in freshly isolated lymphocytes from the epithelial and lamina propria layers of gastric mucosa. Thirteen H. pylori‐positive and 24 H. pylori‐negative individuals were studied. Results: CD94+ T‐cells were the most abundant (up to 40%) natural killer receptor‐positive T‐cell population in epithelial and lamina propria layers of H. pylori‐negative gastric mucosa. CD161+ T‐cells accounted for about one‐third of all T‐cells in both compartments, but the lowest proportion were of CD56+ T‐cells. Compared with H. pylori‐negative mucosa, in H. pylori‐infected mucosa the numbers of CD161+ T‐cells were significantly greater (p = .04) in the epithelium, whereas the numbers of CD56+ T‐cells were lower (p = .01) in the lamina propria. A minor population (< 2%) of T‐cells in both mucosal layers of H. pylori‐negative subjects were natural killer T‐cells, and whose proportions were not significantly different (p > .05) to those in H. pylori‐infected individuals. Conclusions: The predominance, heterogeneity, and distribution of natural killer cell receptor‐positive T‐cells at different locations within the gastric mucosa reflects a potential functional role during H. pylori infection and warrants further investigation.  相似文献   

13.
Background. Helicobacter pylori infection leads to an increased risk of developing gastric cancer. The mechanism through which this occurs is not known. We aimed to determine the effect of H. pylori and gastritis on levels of DNA damage in gastric epithelial cells. Methods. Epithelial cells were isolated from antral biopsies from 111 patients. DNA damage was determined using single cell gel electrophoresis and the proportion of cells with damage calculated before and 6 weeks after eradication of H. pylori. Cell suspensions generated by sequential digestions of the same biopsies were assayed to determine the effect of cell position within the gastric pit on DNA damage. Results. DNA damage was significantly higher in normal gastric mucosa than in H. pylori gastritis [median (interquartile range) 65% (58.5–75.8), n = 18 and 21% (11.9–29.8), n = 65, respectively, p < .001]. Intermediate levels were found in reactive gastritis [55.5% (41.3–71.7), n = 13] and H. pylori negative chronic gastritis [50.5% (36.3–60.0), n = 15]. DNA damage rose 6 weeks after successful eradication of H. pylori[to 39.5% (26.3–51.0), p = .007] but was still lower than in normal mucosa. Chronic inflammation was the most important histological factor that determined DNA damage. DNA damage fell with increasing digestion times (r = –.92 and –.88 for normal mucosa and H. pylori gastritis, respectively). Conclusions. Lower levels of DNA damage in cells isolated from H. pylori infected gastric biopsies may be a reflection of increased cell turnover in H. pylori gastritis. The investigation of mature gastric epithelial cells for DNA damage is unlikely to elucidate the mechanisms underlying gastric carcinogenesis.  相似文献   

14.
Background. Helicobacter pylori (H. pylori) infection is associated with chronic infiltration into the stomach by T cells and plasma cells producing IFN‐γ and antibodies of various specificities, respectively. It is unknown whether these lymphocyte‐products may play coordinated roles in the gastric pathology of this infection. Aims. To know how IFN‐γ may relate to anti‐H. pylori antibodies in their roles in pathogenesis, we determined the isotype subclass of those antibodies as well as their cross‐reactivity and cytotoxicity to gastric epithelium. Methods and Results. We infected BALB/c mice with H. pylori (SS1, Sydney Strain 1) and generated monoclonal antibodies, which were comprised of 240 independent clones secreting immunoglobulin and included 80 clones reactive to SS1. Ninety percent of the SS1‐reactive clones had IgG2a isotype. Two clones, 2B10 and 1A9, were cross reactive to cell surface antigens in H. pylori and to antigens of 28 KDa and 42 KDa, respectively, which were present on the cell surface of and shared by both mouse and human gastric epithelial cells. The antigens recognized by these monoclonal antibodies localized a distinctive area in the gastric glands. In the presence of complement, 2B10 showed cytotoxicity to gastric epithelial cells. The effect was dose dependant and augmented by IFN‐γ. Finally, administration of 2B10 to mice with SS1 infection aggravated gastritis by increasing cellular infiltration. Conclusion. IFN‐γ by gastric T cells may participate in pathogenesis of the H. pylori infected stomach by directing an isotype‐switch of anti‐H. pylori antibodies to complement‐binding subclass and by augmenting cytotoxic activity of a certain autoantibody. This may explain a host‐dependent diversity in gastric pathology of the patients with H. pylori infection.  相似文献   

15.
16.
Background and Aim: Apurinic/apyrimidinic endonuclease‐1 (APE‐1) is a key enzyme in DNA base excision repair (BER), linked to cancer chemosensitivity. However, little is known about the localization of APE‐1 in Helicobacter pylori‐infected gastric mucosa or its role in the development of gastric cancer. To investigate the role of APE‐1 in the development of gastric cancer, we examined APE‐1 expression and localization in cultured cells and gastric biopsies from patients with H. pylori‐infected gastritis or gastric adenoma, and from surgically resected gastric cancer. Methods: APE‐1 mRNA and protein expression were determined in H. pylori (CagA+) water‐extract protein (HPWEP)‐stimulated MKN‐28 cells, gastric adenocarcinoma cell‐line (AGS) cells, and human peripheral macrophages by real‐time polymerase chain reaction and Western blot analysis. APE‐1 expression and 8‐OHdG as a measure of oxidative DNA damage were evaluated by immunostaining. Localization of APE‐1 and IκBα phosphorylation in gastric adenoma and gastric cancer tissues were evaluated by single‐ and double‐label immunohistochemistry. Results: In studies in vitro, HPWEP‐stimulation significantly increased APE‐1 mRNA expression levels in both MKN‐28 cells and human peripheral macrophages. Hypo/reoxygenation treatment significantly increased APE‐1 protein expression in HPWEP‐stimulated MKN‐28 cells. HPWEP stimulation significantly increased both APE‐1 expression and IκBα phosphorylation levels in MKN‐28 and AGS cells. In human tissues, APE‐1 expression in H. pylori‐infected gastritis without goblet cell metaplasia was significantly increased as compared to that in tissues from uninfected subjects. Eradication therapy significantly reduced both APE‐1 and 8‐OHdG expression levels in the gastric mucosa. APE‐1 expression was mainly localized in epithelial cells within gastric adenoma and in mesenchymal cells of gastric cancer tissues. APE‐1 expression in gastric cancer tissues was significantly reduced compared to that in H. pylori‐infected gastric adenoma, while 8‐OHdG index and IκBα phosphorylation levels did not differ between these two neoplastic tissue types. Co‐localization of APE‐1 and IκBα phosphorylation was observed not in gastric cancer cells but in gastric adenoma cells. Conclusion: H. pylori infection is associated with increased APE‐1 expression in human cell lines and in gastric tissues from subjects with gastritis and gastric adenomas. The observed distinct expression patterns of APE‐1 and 8‐OHdG in gastric adenoma and gastric cancer tissues may provide insight into the progression of these conditions and warrants further investigation.  相似文献   

17.
Background. Few reports exist on inflammation and interleukin (IL)‐8 response in H. pylori‐infected children. The aim of this study was to determine the intensity of inflammation, density of colonization and magnitude of IL‐8 response in children with and without H. pylori infection. Materials and Methods. We studied 45 children with dyspeptic symptoms, 21 infected with H. pylori and 24 without infection. Antrum and corpus gastric biopsies were obtained and studied for H. pylori infection with an immunofluorescence technique and for IL‐8 with an immunohistochemical assay. Biopsy specimens were stained with hematoxilin and eosin and gastritis was graded according to the Sydney system. The magnitudes of the IL‐8 response and H. pylori colonization were estimated microscopically with image analyzer software. Results. In H. pylori‐infected children, mild mononuclear cell infiltration was found in 50%, and no neutrophils in 40% of cases. In the antrum but not in the corpus, the intensity of colonization correlated with neutrophil and mononuclear cell infiltration. The IL‐8 response was significantly higher in the antrum (p < .05) and corpus (p < .02) of infected children, and was localized mainly in the surface and crypts of the epithelium. No correlation was found between the magnitude of the IL‐8 response and the infiltration of either neutrophil or mononuclear cells. Conclusions. In H. pylori‐infected children, poor mononuclear and neutrophil infiltration was observed. Infection was associated with a higher IL‐8 response by gastric epithelial cells. The density of colonization but not the IL‐8 response correlated with neutrophil cell infiltration.  相似文献   

18.
19.
20.
Background and Aims. H. pylori infection results in an increased epithelial apoptosis in gastritis and duodenal ulcer patients. We investigated the role and type of activation of caspases in H. pylori‐induced apoptosis in gastric epithelial cells. Methods. Differentiated human gastric cancer cells (AGS) and human gastric mucous cell primary cultures were incubated with H. pylori for 0.5–24 hours in RPMI 1640 medium, and the effects on cell viability, epithelial apoptosis, and activity of caspases were monitored. Apoptosis was analyzed by detection of DNA‐fragments by Hoechst stain®, DNA‐laddering, and Histone‐ELISA. Activities of caspases were determined in fluorogenic assays and by Western blotting. Cleavage of BID and release of cytochrome c were analyzed by Western blot. Significance of caspase activation was investigated by preincubation of gastric epithelial cells with cell permeable specific caspase inhibitors. Results. Incubation of gastric epithelial cells with H. pylori caused a time and concentration dependent induction of DNA fragmentation (3‐fold increase), cleavage of BID, release of cytochrome c and a concomittant sequential activation of caspase‐9 (4‐fold), caspase‐8 (2‐fold), caspase‐6 (2‐fold), and caspase‐3 (6‐fold). No effects on caspase‐1 and ‐7 were observed. Activation of caspases preceded the induction of DNA fragmentation. Apoptosis could be inhibited by prior incubation with the inhibitors of caspase‐3, ‐8, and ‐9, but not with that of caspase‐1. Conclusions. Activation of certain caspases and activation of the mitochondrial apoptotic pathway are essential for H. pylori induced apoptosis in gastric epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号