首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Perczel  K Park  G D Fasman 《Proteins》1992,13(1):57-69
A recently developed algorithm, called Convex Constraint Analysis (CCA), was successfully applied to determine the circular dichroism (CD) spectra of the pure beta-pleated sheet in globular proteins. On the basis of X-ray diffraction determined secondary structures, the original data set used (Perczel, A., Hollosi, M., Tusnady, G. Fasman, G.D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Prot. Eng., 4:669-679, 1991), was improved by the addition of proteins with high beta-pleated sheet content. The analysis yielded CD curves of the pure components of the main secondary structural elements (alpha-helix, antiparallel beta-pleated sheet, beta-turns, and unordered conformation), as well as a curve attributed to the "aromatic contribution" in the wavelength range of 195-240 nm. Upon deconvolution the curves obtained were assigned to various secondary structures. The calculated weights (percentages determining the contributions of each pure component curve in the measured CD spectra of a given protein) were correlated with the X-ray diffraction determined percentages in an assignment procedure and were evaluated. The Pearson product correlation coefficients (R) are significant for all five components. The new pure component curves, which were obtained through deconvolution of the protein CD spectra alone, are promising candidates for determining the percentages of the secondary structural components in globular proteins without the necessity of adopting an X-ray database. The CD spectrum of the CheY protein was interesting because it has the characteristic shape associated with the alpha-helical structure, but upon analysis yielded a considerable amount of beta-sheet in agreement with the X-ray structure.  相似文献   

2.
Quantitative analysis of cyclic beta-turn models.   总被引:2,自引:2,他引:0       下载免费PDF全文
The beta-turn is a frequently found structural unit in the conformation of globular proteins. Although the circular dichroism (CD) spectra of the alpha-helix and beta-pleated sheet are well defined, there remains some ambiguity concerning the pure component CD spectra of the different types of beta-turns. Recently, it has been reported (Hollósi, M., Kövér, K.E., Holly, S., Radics, L., & Fasman, G.D., 1987, Biopolymers 26, 1527-1572; Perczel, A., Hollósi, M., Foxman, B.M., & Fasman, G.D., 1991a, J. Am. Chem. Soc. 113, 9772-9784) that some pseudohexapeptides (e.g., the cyclo[(delta)Ava-Gly-Pro-Aaa-Gly] where Aaa = Ser, Ser(OtBu), or Gly) in many solvents adopt a conformational mixture of type I and the type II beta-turns, although the X-ray-determined conformation was an ideal type I beta-turn. In addition to these pseudohexapeptides, conformational analysis was also carried out on three pseudotetrapeptides and three pseudooctapeptides. The target of the conformation analysis reported herein was to determine whether the ring stress of the above beta-turn models has an influence on their conformational properties. Quantitative nuclear Overhauser effect (NOE) measurements yielded interproton distances. The conformational average distances so obtained were interpreted utilizing molecular dynamics (MD) simulations to yield the conformational percentages. These conformational ratios were correlated with the conformational weights obtained by quantitative CD analysis of the same compounds. The pure component CD curves of type I and type II beta-turns were also obtained, using a recently developed algorithm (Perczel, A., Tusnády, G., Hollósi, M., & Fasman, G.D., 1991b, Protein Eng. 4(6), 669-679). For the first time the results of a CD deconvolution, based on the CD spectra of 14 beta-turn models, were assigned by quantitative NOE results. The NOE experiments confirmed the ratios of the component curves found for the two major beta-turns by CD analysis. These results can now be used to enhance the conformational determination of globular proteins on the basis of their CD spectra.  相似文献   

3.
Tsuboi M  Suzuki M  Overman SA  Thomas GJ 《Biochemistry》2000,39(10):2677-2684
Raman spectra of oriented alpha-helical protein molecules exhibit a prominent band near 1340-1345 cm(-)(1), the intensity of which is highly sensitive to molecular orientation. Polarization of the 1340-1345 cm(-)(1) marker is evident in Raman spectra of alpha-helical poly-L-alanine (alphaPLA) and alpha-helical poly-gamma-benzyl-L-glutamate (alphaPBLG). Corresponding polarization is also observed in Raman spectra of the filamentous virus Pf1, which is an assembly of alpha-helical coat protein molecules. In alphaPLA and alphaPBLG, we assign the band to a normal mode of symmetry type E(2) and specifically to a vibration localized in the (O=C)-C(alpha)-H linkages of the main chain peptide group. Although strict helical symmetry does not apply to coat subunits of filamentous viruses, an approximate E(2)-type mode may be presumed to account for a corresponding Raman band of Pf1 and fd filamentous viruses. Spectroscopic studies of N-methylacetamide and isotopically-edited fd viruses support the present assignment of the 1340-1345 cm(-)(1) band. Polarization anisotropy indicates that this band may be exploited as a novel indicator of protein alpha-helix orientation. Application of this approach to the polarized Raman spectrum of Pf1 suggests that, on average, the axis of the alpha-helical coat protein subunit in the native virion structure forms an angle of 20 +/- 10 degrees with respect to the virion axis.  相似文献   

4.
Wen ZQ  Armstrong A  Thomas GJ 《Biochemistry》1999,38(10):3148-3156
Pf1, a class II filamentous virus, has been investigated by ultraviolet resonance Raman (UVRR) spectroscopy with excitation wavelengths of 257, 244, 238, and 229 nm. The 257-nm UVRR spectrum is rich in Raman bands of the packaged single-stranded DNA (ssDNA) genome, despite the low DNA mass (6%) of the virion. Conversely, the 229-nm UVRR spectrum is dominated by tyrosines (Tyr 25 and Tyr 40) of the 46-residue alpha-helical coat subunit. UVRR spectra excited at 244 and 238 nm exhibit Raman bands diagnostic of both viral DNA and coat protein tyrosines. Raman markers of packaged Pf1 DNA contrast sharply with those of the DNA packaged in the class I filamentous virus fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J., Jr. (1997) Biochemistry 36, 7810-7820]. Interestingly, deoxynucleotides of Pf1 DNA exhibit sugars in the C2'-endo/anti conformation and bases that are largely unstacked, compared with C3'-endo/anti conformers and very strong base stacking in fd DNA; hydrogen-bonding interactions of thymine carbonyls are also different in Pf1 and fd. On the other hand, coat protein tyrosines of Pf1 exhibit Raman markers of ring environment identical to those of fd, including an anomalous singlet at 853 cm-1 in lieu of the canonical Fermi doublet (850/830 cm-1) found in globular proteins. The results indicate markedly different modes of organization of ssDNA in Pf1 and fd virions, despite similar environments for coat protein tyrosines, and suggest strong hydrogen-bonding interactions between DNA bases and coat subunits of Pf1 but not between those of fd. We propose that structural relationships between the protein coat and encapsidated ssDNA genome are also fundamentally different in the two assemblies.  相似文献   

5.
Wen ZQ  Thomas GJ 《Biochemistry》2000,39(1):146-152
The class II filamentous virus Pf3 packages a circular single-stranded DNA genome of approximately 5833 [corrected] nucleotides within a cylindrical capsid constructed from approximately 2500 [corrected] copies of a 44 residue alpha-helical subunit. The single tryptophan residue (Trp 38) of the capsid subunit is located within a basic C-terminal sequence (.R(+)WIK(+)AQFF). The local environment of Trp 38 in the native Pf3 assembly has been investigated using 229 nm excited ultraviolet-resonance Raman (UVRR) spectroscopy and fluorescence spectroscopy. Trp 38 exhibits an anomalous UVRR signature in Pf3, including structure-diagnostic Raman bands (763, 1228, 1370, and 1773 cm(-)(1)) that are greatly displaced from corresponding Raman markers observed in either detergent-disassembled Pf3, class I filamentous viruses, most globular proteins, or aqueous L-TRP. An unusual and highly quenched fluorescence spectrum is also observed for Trp 38. These distinctive UVRR and fluorescence signatures together reflect interactions of the Trp 38 side chain that are specific to the native PF3 assembly. The experimental results on PF3 and supporting spectroscopic data from other proteins of known three-dimensional structure favor a model in which pi electrons of the Trp 38 indolyl ring interact specifically with a basic side chain of the subunit C-terminal sequence. Residues Arg 37 AND Lys 40 are plausible candidates for the proposed cation-pi interaction of Trp 38. The present study suggests that raman spectroscopy may be a generally useful probe of interactions between the indolyl pi-electron system of tryptophan and electropositive groups in proteins and their assemblies.  相似文献   

6.
Filamentous phages consist of a single-stranded DNA genome encapsidated by several thousand copies of a small alpha-helical coat protein subunit plus several copies of four minor proteins at the filament ends. The filamentous phages are important as cloning vectors, vehicles for peptide display, and substrates for macromolecular alignment. Effective use of a filamentous phage in such applications requires an understanding of experimental factors that may influence the propensity of viral filaments to laterally aggregate in solution. Because the Raman spectrum of a filamentous phage is strongly dependent on the relative orientation of the virion with respect to the polarization direction of the electromagnetic radiation employed to excite the spectrum, we have applied Raman spectroscopy to investigate lateral aggregation of phages fd, Pf1, Pf3, and PH75 in solution. The results show that lateral aggregation of the virions and anisotropic orientation of the aggregates are both disfavored by high concentrations of salt (>200 mM NaCl) in solutions containing a relatively low virion concentration (<10 mg/mL). Conversely, the formation of lateral aggregates and their anisotropic orientation are strongly favored by a low salt concentration (<0.1 mM NaCl), irrespective of the virion concentration over a wide range. The use of Raman polarization effects to distinguish isotropic and anisotropic solutions of filamentous phages is consistent with previously reported Raman analyses of virion structures in both solutions and fibers. The Raman data are supported by electron micrographs of negatively stained specimens of phage fd, which permit an independent assessment of salt effects on lateral aggregation. The present results also identify new Raman bands that serve as potential markers of subunit side-chain orientations in filamentous virus assemblies.  相似文献   

7.
A constrained, iterative Fourier deconvolution method is employed to enhance the resolution of Raman spectra of biological molecules for quantitative assessment of macromolecular secondary structures and hydrogen isotope exchange kinetics. In an application to the Pf1 filamentous bacterial virus, it is shown that the Raman amide I band contains no component other than that due to alpha-helix, indicating the virtual 100% helicity of coat proteins in the native virion. Comparative analysis of the amide I band of six filamentous phages (fd, If1, IKe, Pf1, Xf, and Pf3), all at the same experimental conditions, indicates that the subunit helix-percentage ranges from a high of 100% in Pf1 to a low of 71% in Xf. Deconvolution of amide I of Pf3 at elevated temperatures, for which an alpha-to-beta transition was previously reported (Thomas, G. J., Jr., and L. A. Day, 1981, Proc. Natl. Acad. Sci. USA., 78:2962-2966), allows quantitative evaluation of the contributions of both alpha-helix and beta-strand conformations to the structure of the thermally perturbed viral coat protein. Weak Raman lines of viral DNA bases and coat protein side chains, which are poorly resolved instrumentally, are also distinguished for all viruses by the deconvolution procedure. Application to the carbon-8 hydrogen isotope exchange reaction of a purine constituent of transfer RNA permits accurate determination of the exchange rate constant, which is in agreement with calculations based upon curve-fitting methods.  相似文献   

8.
Summary The mature penicillin G acylase fromKluyvera citrophila was examined by circular dichroism (CD). The far-UV CD spectrum at neutral pH revealed 11% alpha-helix, 44% beta-sheet, 11% beta-turn and 34% random coil. Far-UV and near-UV CD spectra showed that the enzyme presented a high conformational stability under different conditions of pH and salt concentration. The predictive model of Chou and Fasman indicated the presence of several beta-segments that could be arranged in antiparallel beta-sheets, which might explain the structural stability. The near-UV CD spectrum in the presence of penicillin G sulfoxide showed that the binding of this inhibitor to the enzyme resulted in modification of the dichroism of several aromatic residues.  相似文献   

9.
A ridge regression method is presented for prediction of the secondary structure of proteins by the circular dichroism spectra (CD) from 190 to 236 nm. Eight types of the secondary structure were calculated on a microcalculator. The method is based on the X-ray data of Kabsh and Sander. The teaching rule is constructed on CD spectra of 30 proteins of all structural classes of the globular proteins (alpha, alpha/beta, alpha + beta and beta-proteins). The errors of the methods are analysed by removing each protein from the reference set and analyzing its structure in terms of the remaining proteins. Correlation coefficients and root-mean square deviations between CD and X-ray data were: 0.99 and 0.03 for alpha-helix, 0.86 and 0.02 for 3(10)-helix, 0.92 and 0.06 for antiparallel beta-sheet, 0.86 and 0.03 for parallel beta-sheet, 0.94 and 0.01 for T3 beta-turn, 0.85 and 0.02 for other beta-turn, 0.84 and 0.03 for S-bends, 0.83 and 0.04 for "random" structure.  相似文献   

10.
The filamentous virus PH75, which infects the thermophile Thermus thermophilus, consists of a closed DNA strand of 6500 nucleotides encapsidated by 2700 copies of a 46-residue coat subunit (pVIII). The PH75 virion is similar in composition to filamentous viruses infecting mesophilic bacteria but is distinguished by in vivo assembly at 70 degrees C and thermostability to at least 90 degrees C. Structural details of the PH75 assembly are not known, although a fiber X-ray diffraction based model suggests that capsid subunits are highly alpha-helical and organized with the same symmetry (class II) as in the mesophilic filamentous phages Pf1 and Pf3 [Pederson et al. (2001) J. Mol. Biol. 309, 401-421]. This is distinct from the symmetry (class I) of phages fd and M13. We have employed polarized Raman microspectroscopy to obtain further details of PH75 architecture. The spectra are interpreted in combination with known Raman tensors for modes of the pVIII main chain (amide I) and Trp and Tyr side chains to reveal the following structural features of PH75: (i) The average pVIII peptide group is oriented with greater displacement from the virion axis than peptide groups of fd, Pf1, or Pf3. The data correspond to an average helix tilt angle of 25 degrees in PH75 vs 16 degrees in fd, Pf1, and Pf3. (ii) The indolyl ring of Trp 37 in PH75 projects nearly equatorially from the subunit alpha-helix axis, in contrast to the more axial orientations for Trp 26 of fd and Trp 38 of Pf3. (iii) The phenolic rings of Tyr 15 and Tyr 39 project along the subunit helix axis, and one phenoxyl engages in hydrogen-bonding interaction that has no counterpart in either fd or Pf1 tyrosines. Also, in contrast to fd, Pf1, and Pf3, the packaged DNA genome of PH75 exhibits no Raman anisotropy, suggesting that DNA bases are not oriented unidirectionally within the nucleocapsid assembly. The structural findings are discussed in relation to intrasubunit and intersubunit interactions that may confer hyperthermostability to the PH75 virion. A refined molecular model is proposed for the PH75 capsid subunit.  相似文献   

11.
12.
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of 16 globular proteins (insulin, lactate dehydrogenase, glucose isomerase, lipase, conalbumin, transferrin, catalase, subtilisin A, alpha-amylase, staphylococcal nuclease, papain, thioredoxin, carbonic anhydrase, elastase, avidin, and xylanase) were successfully measured in aqueous solutions at 25 degrees C from 260 to 160 nm under a high vacuum using a synchrotron-radiation VUVCD spectrophotometer. These proteins exhibited characteristic CD spectra below 190 nm that were related to their different secondary structures, which could not be detected with a conventional CD spectrophotometer. The component spectra of alpha-helices, beta-strands, turns, and unordered structures were obtained by deconvolution analysis of the VUVCD spectra of 31 reference proteins including the 15 proteins reported in our previous paper [Matsuo, K. et al. (2004) J. Biochem. 135, 405-411]. Prediction of the secondary-structure contents using the SELCON3 program was greatly improved, especially for alpha-helices, by extending the short-wavelength limit of CD spectra to 160 nm and by increasing the number of reference proteins. The numbers of alpha-helix and beta-strand segments, which were calculated from the distorted alpha-helix and beta-strand contents, were close to those obtained on X-ray crystallography. These results demonstrate the usefulness of synchrotron-radiation VUVCD spectroscopy for the secondary structure analysis of proteins.  相似文献   

13.
The filamentous bacteriophages fd, If1, IKe, Pf1, Xf and Pf3 in aqueous solutions of low, moderate and high ionic strength have been investigated as a function of temperature by laser Raman difference spectroscopy. By analogy with Raman spectra of model compounds and viruses of known structure, the data reveal the following structural features: the predominant secondary structure of the coat protein subunit in each virus is the alpha-helix, but the amount of alpha-helix differs from one virus to another, ranging from an estimated high of 100% in Pf1 to a low of approximately 50% in Xf. The molecular environment and intermolecular interactions of tyrosine, tryptophan and phenylalanine residues differ among the different viruses, as do the conformations of aliphatic amino acid side-chains. The foregoing features of coat protein structure are highly sensitive to changes in Na+ concentration, temperature or both. The backbones of A-DNA and B-DNA structures do not occur in any of the viruses, and unusual DNA structures are indicated for all six viruses. The alpha-helical protein subunits of Pf1, like those of Pf3 and Xf, can undergo reversible transitions to beta-sheet structures while retaining their association with DNA; yet fd, IKe and If1 do not undergo such transitions. Raman intensity changes with ionic strength or temperature suggest that transgauche rotations of aliphatic amino acid side-chains and stacking of aromatic side-chains are important structural variables in each virus.  相似文献   

14.
Heat shock proteins are rapidly synthesized when cells are exposed to stressful agents that cause protein damage. The 70-kDa heat shock induced proteins and their closely related constitutively expressed cognate proteins bind to unfolded and aberrant polypeptides and to hydrophilic peptides. The structural features of the 70-kDa heat shock proteins that confer the ability to associate with diverse polypeptides are unknown. In this study, we have used circular dichroism (CD) spectroscopy and secondary structure prediction to analyze the secondary structure of the mammalian 70-kDa heat shock cognate protein (hsc 70). The far-ultraviolet CD spectrum of hsc 70 indicates a large fraction of alpha-helix in the protein and resembles the spectra one obtains from proteins of the alpha/beta structural class. Analysis of the CD spectra with deconvolution methods yielded estimates of secondary structure content. The results indicate about 40% alpha-helix and 20% aperiodic structure within hsc 70 and between 16-41% beta-sheet and 21-0% beta-turn. The Garnier-Osguthorpe-Robson method of secondary structure prediction was applied to the rat hsc 70 amino acid sequence. The predicted estimates of alpha-helix and aperiodic structure closely matched the values derived from the CD analysis, whereas the predicted estimates of beta-sheet and beta-turn were midway between the CD-derived values. Present evidence suggests that the polypeptide ligand binding domain of the 70-kDa heat shock protein resides within the C-terminal 160 amino acids [Milarski, K. L., & Morimoto, R. I. (1989) J. Cell Biol. 109, 1947-1962].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The conformation of bovine Hsc70, a 70-kDa heat shock cognate protein, and its conformational change upon binding to decapeptides, was studied by CD spectroscopy and secondary structure prediction (Chou, P.Y. & Fasman, G.D., 1974, Biochemistry 13, 222-245). The CD spectra were analyzed by the LINCOMB method, as well as by the convex constraint analysis (CCA) method (Perczel, A., Park, K., & Fasman, G.D., 1992, Anal. Biochem. 203, 83-93). The result of the CD analysis of Hsc70 (15% alpha-helix, 24% beta-sheet, 24% beta-turn, and 38% remainder) was very similar to the predicted secondary structure for the beta-sheet (24%) and the beta-turn (29%). However, there is disagreement between the alpha-helical content by CD analysis (15%) and the predicted structure (30%). In spite of the fact that the decapeptides contained a considerable amount of beta-sheet (22%), the interaction of the heat shock protein with the peptide resulted in an overall decrease in the content of beta-sheet conformation (-15%) of the complex. This may be due to induction of a molten globule state. The result of the CCA analysis indicated that the Hsc70 undergoes a conformational change upon binding the decapeptides.  相似文献   

16.
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.  相似文献   

17.
The Pseudomonas bacteriophage Pf1 is a long ( approximately 2000 nm) and thin ( approximately 6.5 nm) filament consisting of a covalently closed, single-stranded DNA genome of 7349 nucleotides coated by 7350 copies of a 46-residue alpha-helical subunit. The coat subunits are arranged as a superhelix of C(1)()S(5.4)() symmetry (class II). Polarized Raman and polarized FTIR spectroscopy of oriented Pf1 fibers show that the packaged single-stranded DNA genome is ordered specifically with respect to the capsid superhelix. Bases are nonrandomly arranged along the capsid interior, deoxynucleosides are uniformly in the C2'-endo/anti conformation, and the average DNA phosphodioxy group (PO(2)(-)) is oriented so that the line connecting the oxygen atoms (O.O) forms an angle of 71 degrees +/- 5 degrees with the virion axis. Raman and infrared amide band polarizations show that the subunit alpha-helix axis is inclined at an average angle of 16 degrees +/- 4 degrees with respect to the virion axis. The alpha-helical symmetry of the capsid subunit is remarkably rigorous, resulting in splitting of Raman-active helix vibrational modes at 351, 445 and 1026 cm(-)(1) into apparent A-type and E(2)()-type symmetry pairs. The subunit tyrosines (Tyr 25 and Tyr 40) are oriented with phenoxyl rings packed relatively close to parallel to the virion axis. The Tyr 25 and Tyr 40 orientations of Pf1 are surprisingly close to those observed for Tyr 21 and Tyr 24 of the Ff virion (C(5)()S(2)() symmetry, class I), suggesting a preferred tyrosyl side chain conformation in packed alpha-helical subunits, irrespective of capsid symmetry. The polarized Raman spectra also provide information on the orientations of subunit alanine, valine, leucine and isoleucine side chains of the Pf1 virion.  相似文献   

18.
The membrane insertion of single bacteriophage Pf3 coat proteins was observed by confocal fluorescence microscopy. Within seconds after addition of the purified and fluorescently labeled protein to liposomes or proteoliposomes containing the purified and reconstituted membrane insertase YidC of Escherichia coli, the translocation of the labeled residue was detected. The 50-amino-acid-long Pf3 coat protein was labeled with Atto520 and inserted into the proteoliposomes. Translocation of the dye into the proteoliposome was revealed by quenching the fluorescence outside of the vesicles. This allowed us to distinguish single Pf3 coat proteins that only bound to the surface of the liposomes from proteins that had inserted into the bilayer and translocated the dye into the lumen. The Pf3 coat protein required the presence of the YidC membrane insertase, whereas mutants that have a membrane-spanning region with an increased hydrophobicity were autonomously inserted into the liposomes without YidC.  相似文献   

19.
The filamentous bacteriophage Pf1 undergoes a reversible temperature-dependent transition that is also influenced by salt concentrations. This structural responsiveness may be a manifestation of the important biological property of flexibility, which is necessary for long, thin filamentous assemblies as a protection against shear forces. To investigate structural changes in the major coat protein, one- and two-dimensional solid-state NMR spectra of concentrated solutions of Pf1 bacteriophage were acquired, and the structure of the coat protein determined at 0 degrees C was compared with the structure previously determined at 30 degrees C. Despite dramatic differences in the NMR spectra, the overall change in the coat protein structure is small. Changes in the orientation of the C-terminal helical segment and the conformation of the first five residues at the N-terminus are apparent. These results are consistent with prior studies by X-ray fiber diffraction and other biophysical methods.  相似文献   

20.
Imhof N  Kuhn A  Gerken U 《Biochemistry》2011,50(15):3229-3239
The binding of Pf3 coat protein to the membrane insertase YidC from Escherichia coli induces a conformational change in the tertiary structure of the insertase, resulting in a quenching of the intrinsic tryptophan (Trp) fluorescence. Tryptophan mutants of YidC were generated to examine such conformational movements in detail with time-resolved and steady-state fluorescence spectroscopy. Ten of the 11 Trp residues within YidC were substituted to phenylalanines generating single Trp mutants either at position 354, 454, or 508. In addition, a double mutant with Trp residues at 332 and 334 was studied. Purified YidC mutants were reconstituted into DOPC/DOPG vesicles and titrated with a Trp-free mutant of Pf3 coat, enabling a detailed conformational study of the periplasmic P1, P2, and P3 domains of YidC before and after binding of substrate. Time-resolved fluorescence anisotropy revealed that the mobility of the residues W332/W334 and W508 was considerably increased after binding of Pf3 coat to the insertase. Furthermore, analysis of the fluorescence emission spectra and the decay times showed that all Trp residues are embedded in an equivalent environment that is a membrane/water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号