首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to investigate the mechanism of the formation of the mesodermal layer during chick gastrulation, we observed the behavior of fragments of mesodermal cells explanted and cultured on substrata coated with parallel lines of fibronectin (FN). We also examined the distribution of F-actin, alpha-actinin, and vinculin in explanted fragments by immunocytochemical methods noting particularly their distribution with respect to FN lines. Explants of mesodermal cells flattened on FN-coated substrata and then became elliptical with the major axis of the ellipse oriented along the FN lines and migrated along them. The peripheral cells of explants extended filopodia and lamellipodia which attached preferentially to FN lines and then contracted, pulling other mesodermal cells in explants along passively. Vinculin and alpha-actinin in peripheral anchoring filopodia and lamellipodia co-localized with the terminations of F-actin bundles and with FN lines, suggesting that the peripheral cells were the moving force for explant translocation. We propose based on these results that in vivo, peripheral cells of invaginated cell mass are guided by the known FN-rich fibrous extracellular matrix on the basal surface of epiblast to move outwards; the rest linked to the peripheral cells are pulled away from the primitive streak to spread in tandem to form the mesodermal layer.  相似文献   

3.
Summary Chick mesodermal cells, having become invaginated and beginning to locomote prior to the formation of the mesodermal cell layer at an early primitive streak stage, extend many filopodia and flatten themselves against the basal surface of the epiblast. Morphometry on scanning electron micrographs of chick mesodermal cells revealed two statistically significant tendencies. Each cell took an extended form and protruded filopodia, preferably along its major axis, suggesting that the force extending the cell body was generated by both ends rich in filopodia. The cells also tended to protrude filopodia most frequently in a direction away from Hensen's node. The orientation of the fibrous extracellular matrix (fECM), running on the basal surface of the epiblast, was assessed quantitatively, and it was proved statistically that the orientation of the fECM was radial around the primitive streak: With an immunogold staining technique, fECM, to which the filopodia of the mesodermal cells attached frequently and closely, was confirmed to be rich in fibronectin (FN). These results lead us to conclude that the mesodermal cells in chick gastrula were guided to locomote towards the periphery of the area pellucida by FN-rich fECM laid on the basal surface of the epiblast, and that this movement was due to an in vivo locomotive mechanism using filopodia. Offprint requests to: R. Toyoizumi  相似文献   

4.
The competence of stage XIII chick epiblast which under the influence of an inductive hypoblast is directed to form a normal primitive streak, is affected by 5-bromodeoxyuridine (BUdR). The BUdR-treated epiblast forms an atypical primitive streak and no axial mesoderm. However, a nonorganized mesenchymal layer is formed between the epiblast and the hypoblast, and atypical neural tissue in the epiblast. BUdR interferes neither with hypoblast formation nor with its inductivity even when blastoderms are treated with BUdR as early as uterine stage VIII and later.  相似文献   

5.
Summary Recently fibronectin was shown to appear in the development of the chick for the first time as a thin band on the epiblastic side facing the hypoblast just prior to primitive streak formation. It was thus suggested that fibronectin might be instrumental in the migration of cells that lead to axis formation during primitive streak formation. In the present work we have examined simultaneously for the presence of fibronectin and the specific basement membrane glycoprotein laminin during primitive streak formation using immunofluorescence methods. Laminin was found to be expressed between the epiblast and the hypoblast of stage XIII1 chick blastoderms. During the immediately following process of streak formation the laminin was found to be continuously detectable throughout the area covered by the hypoblast, but disrupted on the streak area. Fibronectin was found to co-distribute with laminin in stage XIII and in the early primitive streak chick blastoderms. It is concluded that at stage XIII laminin and fibronectin form part of a basement membrane that is partially disrupted during the immediately following process of primitive streak formation in order to allow the migration of the streak-forming epiblastic cells during this morphogenetic process.  相似文献   

6.
Freshly plated 3T3 cells send out radial projections or filopodia. We observed cells which happended to settle on glass near the borderline of a gold-plated area. When some of the filopodia contacted the gold-plated area and others the glass substratum and remained attached for a few minutes, lamellipodia then extended preferentially toward the gold-plated area. 1-2 h later, most of the cells were found in the gold-plated area. When the filopodia of a spreading 3T3 cell contacted another already spread 3T3 cell and also the glass substratum, the first lamellipodia extended preferentially towards the glass. These observations suggest a directionally differentiated extension of lamellipodia after the filopodia of a spreading 3T3 cell have contacted different substrates in their environment. Before filopodia contact a substrate, they perform a rapid "scanning" motion. Therefore, we suggest that the filopodia of a spreading 3T3 cell serve as organs which explore the nonfluid environment and react to a certain quality of the substrate that is presently unknown. Subsequently, they mediate the extension of lamellipodia into the direction in which this quality is found. The described phenomena are reversibly inhibited by Cytochalasin B at concentrations above 5 mug/ml although filopodia are produced.  相似文献   

7.
Cell-substrate interactions have been studied by examining migrating edge cells of the expanding chick extraembryonic epiblast on their normal substrate and in culture. Scanning electron microscopy shows that the outer face of the vitelline membrane is a random meshwork of fibrils (80 nm diam). The inner face, which is the normal substrate of epiblast expansion, is composed of a random branched system of fibers (400 nm diam) overlain by a network of fibrils (40 nm diam). The epiblast edge in situ has radially oriented filopodia (20 μm long, 200 nm diam.), frequently extending from broad lamellipodia. Blastoderms cultured on the inner face of unincubated vitelline membrane expand at a normal rate but display ruffles as well as filopodia and lamellipodia. When the blastoderm is cultured on the outer membrane face there is no expansion, but cells leave the edge and migrate across the membrane. In these cultures, ruffles are observed on the ventral epiblast face. Absence of the mass of yolk in culture appears to permit or provoke the observed ruffling. Comparison of dissociated epiblast edge cells and skin epithelial cells, cultured on glass and on the vitelline membrane inner face, indicates that epiblast cells remain flattened and display characteristic filopodia on both substrates, whereas skin cells display ruffles on the vitelline membrane but are flattened on glass. The mode of migration of epiblast edge cells seems to be more dependent on intrinsic factors than that of skin cells.  相似文献   

8.
During axis formation in amniotes, posterior and lateral epiblast cells in the area pellucida undergo a counter-rotating movement along the midline to form primitive streak (Polonaise movements). Using chick blastoderms, we investigated the signaling involved in this cellular movement in epithelial-epiblast. In cultured posterior blastoderm explants from stage X to XI embryos, either Lefty1 or Cerberus-S inhibited initial migration of the explants on chamber slides. In vivo analysis showed that inhibition of Nodal signaling by Lefty1 affected the movement of DiI-marked epiblast cells prior to the formation of primitive streak. In Lefty1-treated embryos without a primitive streak, Brachyury expression showed a patchy distribution. However, SU5402 did not affect the movement of DiI-marked epiblast cells. Multi-cellular rosette, which is thought to be involved in epithelial morphogenesis, was found predominantly in the posterior half of the epiblast, and Lefty1 inhibited the formation of rosettes. Three-dimensional reconstruction showed two types of rosette, one with a protruding cell, the other with a ventral hollow. Our results suggest that Nodal signaling may have a pivotal role in the morphogenetic movements of epithelial epiblast including Polonaise movements and formation of multi-cellular rosette.  相似文献   

9.
Laminin is a major glycoprotein of basement membranes and has been shown to promote cell adhesion, and movement of various nonepithelial cells and tumour cells. Using antibodies to laminin in paraffin sections and cultured embryos, we have studied the distribution of laminin and its involvement in the first morphogenetic events, beginning with the first extensive cellular migrations and interactions that result in the induction of the primitive streak (PS) and of the neural plate in the early chick embryo. Laminin immunogold labeling was not detected in the blastoderm at stage X. At stage XIII, laminin immunoreactivity was detected at the ventral surface of the epiblast and in the entire hypoblast. The intense labeling of the hypoblast indicated that these cells are active in laminin synthesis. Extracellular matrix (ECM) started accumulating as the first embryonic spaces were forming, before the morphogenetic movements of gastrulation were initiated. Immunogold labeling revealed a punctate pattern of laminin distribution in the ECM in the blastocoele, and in the space below the neural plate. Laminin, which is a multidomain molecule known to interact with other molecules of the ECM and with the cell surface, could serve as the scaffold for highly specific contact points of migrating cells and for the folding of epithelial sheets during this time in the developing embryo. We incubated blastoderms at stages X and XIII with laminin antibodies (1:30 dilution) for 4 h, then cultured the blastoderms further in plain egg albumin. The laminin antibodies did not interfere with triggering of PS cell movements, but perturbed the normal migration pattern of these cells. A normal PS did not form and, as a consequence, the embryonic axis was not induced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
《The Journal of cell biology》1994,127(4):1071-1084
We have studied the role of vinculin in regulating integrin-dependent neurite outgrowth in PC12 cells, a neuronal cell line. Vinculin is a cytoskeletal protein believed to mediate interactions between integrins and the actin cytoskeleton. In differentiated PC12 cells, the cell body, the neurite, and the growth cone contain vinculin. Within the growth cone, both the proximal region of "consolidation" and the more distal region consisting of lamellipodia and filopodia contain vinculin. To study the role of vinculin in neurite outgrowth, we generated vinculin-deficient isolates of PC12 cell lines by transfection with vectors expressing antisense vinculin RNA. In some of these cell lines, vinculin levels were reduced to 18-23% of normal levels. In the vinculin-deficient cell lines, neurite outgrowth on laminin was significantly reduced. In time-lapse analysis, growth cones advanced much more slowly than normal. Further analysis indicated that this deficit could be explained in large part by changes in the behaviors of filopodia and lamellipodia. Filopodia were formed in normal numbers, extended at normal rates, and extended to approximately normal lengths, but were much less stable in the vinculin deficient compared to control PC12 cells. Similarly, lamellipodia formed and grew nearly normally, but were dramatically less stable in the vinculin- deficient cells. This can account for the reduction in rate of growth cone advance. These results indicate that interactions between integrins and the actin-based cytoskeleton are necessary for stability of both filopodia and lamellipodia.  相似文献   

11.
The incorporation of 5-bromodeoxyuridine (5-BrdUrd) into DNA of the area opaca vasculosa (AOV) of chick embryos during organ culture was measured. The AOV from blastoderms of the definitive primitive streak stage will not form red cells in the presence of BrdUrd while the AOV of 1–3 somite blastoderms is unaffected by the presence of 5-BrdUrd. About 90% of the original non-density labeled DNA can replicate in the presence of 5-BrdUrd if the tissues come from the younger sensitive embryos, but only 65% of the original DNA will replicate from tissues of older insensitive embryos. Tissues from embryos of both ages replace about 80% of the thymidine by BrdUrd in each newly synthesized strand of DNA; tissues from embryos of both ages will form DNA of hybrid density after one cell generation, and will also form double-heavy DNA after longer periods of culture in the presence of 5-BrdUrd. During recovery from 5-BrdUrd inhibition during a thymidine chase, the density-labeled DNA is replicated so that the new DNA of normal density is formed, but the original heavy 5-BrdUrd containing strands are conserved. It is suggested that inhibition of red cell formation by 5-BrdUrd may occur by incorporation of 5-BrdUrd into DNA of endoderm cells, rather than by acting only directly on red cell precursors.  相似文献   

12.
We describe morphological events of the mammalian gastrulation in pre- to middle-primitive-streakstage mouse embryos by using scanning electron microscopy. The first sign of the ingression of the mesodermal cells was disruption of the epithelial structure of ectoderm and the underlying basal lamina, thus forming a semicircular area of the presumptive primitive streak. Then, cells at periphery of the semicircular region spread on the basal lamina by extending many filopodia to it. The majority of the migrating cells formed a loosely arranged cell sheet. We found solitary cells and isolated small groups of cells migrating away from the periphery of the cell sheet. These cells were well spread on the basal lamina, and had large cell processes and many filopodia in the direction of cell migration. Filopodia of these cells were attached to the basal lamina or a meshwork of the extracellular fibrils. These observations suggest that the extracellular matrix serves as the substratum for cell adhesion and migration, and plays an important role in the mammalian gastrulation.  相似文献   

13.
We studied the effect of feeder cells (fibroblasts) and a mixture of the extracellular matrix components, Matrigel, on spreading and cytoskeleton organization of newborn rat keratinocytes (REK). REK formed lamellipodia on being plated together with feeder cells and on the Matrigel as a substrate whereas the same REK plated alone on a plastic surface formed filopodia. REK lamellipodia formation in co-cultures depended on the fibroblast addition time. Although conditioned medium from fibroblast cultures was not enough to induce lamellipodia, the extracellular matrix left after fibroblast removal was as effective as Matrigel. Our results indicate that lamellipodia formation seems to depend on the factor(s) secreted by fibroblasts and associated with the extracellular matrix.  相似文献   

14.
Summary Chick blastoderms were cultured for 2 h in the presence of35S-sulphate. The distribution of the grains after light microscope autoradiography was compared in blastoderms during the elongation and during the shortening of the primitive streak. A uniform labeling was observed over the cells in both groups. Accumulation of grains was present in both groups at the ventral side of the upper layer, where transmission electron microscope studies have revealed a basal lamina. An additional accumulation of grains occurred over the cells and in the extracellular spaces of the head process and of the rostral part of blastoderms with shortening primitive streaks. This positivity could be correlated with the presence of ingressing and recently ingressed notochordal cells. Treatment of the sections with chondroitinase ABC and/or HNO2 before dipping in the nuclear emulsion demonstrated that at least chondroitin sulphate and N-sulphated heparan sulphate were present.  相似文献   

15.
The radial expansion of the chick extraembryonic epiblast on the inner side of the vitelline membrane in yolk sac formation provides a useful system for study of adhesion and migration of an epithelial cell sheet. A band of specialized cells at the epiblast edge adheres by its dorsal side to the overlying vitelline membrane. The attached edge was examined by scanning electron microscopy. The attachment region (av 0.06 mm wide) extends from the advancing edge to a transitional ridge. The ridge appears to be an area of adhesion and de-adhesion. The attached surface is smooth with small surface projections and filopodia. These become more numerous and prominent with cold treatment. Epiblast cells display a filopodial/lamellipodial mode of migration in vivo and in vitro. The distribution of 4- to 7-nm microfilaments in edge cells is examined using transmission electron microscopy of whole cells. Decoration with heavy meromyosin shows that these components of the cytoskeleton contain actin. Treatment of intact blastoderms and dissociated edge cells with cytochalasin B and cold suggests that microfilaments rather than microtubules are primarily responsible for edge cell morphology. Early blastoderm cells which have not initiated migration respond to cytochalasin B, cold, and colcemid in the same way as migrating edge cells. This suggests that the differentiative change that produces the rapidly migrating edge cells does not involve a shift in the relative contribution of microtubules and microfilaments to the cytoskeleton.  相似文献   

16.
The Initiation of Gastrular Ingression in the Chick Blastoderm   总被引:3,自引:0,他引:3  
Normal gastrular ingression in the chick blastoderm occurs intwo steps. The first consists in de-epithelialization of thecells in the middle of the young primitive streak. The cellsthat will ingress converge as a sheet towards the primitivestreak; this convergence builds up the elongating primitivestreak. These cells come from a large posterior area of thearea pellucida. In this area they show many blebs at their ventralside. These blebs are not visible in the more lateral regionsof the upper layer at this stage. During the second step ofingression, de-epithelialization goes on in the middle of theprimitive streak, but convergence within the upper layer hascome to an end, while migration of the ingressed middle layercells starts, away from the primitive streak. To observe thefirst stages of ingression, we studied secondary primitive streaks,induced by grafting a nodus posterior into the entophyllic crescentof a host blastoderm. We fixed blastoderms in which, thougha secondary primitive streak was not yet visible, spreadingof the graft had taken place so as to make evocation of a streakmost probable. From this study we conclude that the initiationof de-epithelialization in experimental and probably in normalchick gastrulation is not preceded by an overall lysis of thebasal lamina at the future site of ingression. Ingression startsand goes on as a de-epithelialization of individual cells.  相似文献   

17.
Frabin is a GDP/GTP exchange protein for Cdc42 small G protein with actin filament-binding activity. Frabin consists of the actin filament-binding domain, the Dbl homology domain, the first pleckstrin homology domain, the FYVE-finger domain, and the second pleckstrin homology domain in this order from the N-terminus. Frabin forms filopodia through direct activation of Cdc42 and lamellipodia through indirect activation of Rac small G protein. We isolated here two smaller splicing variants of frabin and named the original one, middle-size one, and smallest one frabin-alpha, -beta, and -gamma, respectively. Frabin-beta lacked the second pleckstrin homology domain and frabin-gamma lacked the FYVE-finger domain and the second pleckstrin homology domain. These three variants were expressed in all of the tissues examined but their expression levels are different depending on tissues. In L fibroblasts, all the three variants formed filopodia. As to lamellipodia, frabin-alpha formed them; frabin-beta formed them to a small extent; and frabin-gamma did not. In MDCK epithelial cells, frabin-alpha formed microspikes but frabin-beta or -gamma did not.  相似文献   

18.
BACKGROUND INFORMATION: The alpha- and beta-spectrin chains constitute the filaments of the spectrin-based skeleton, which was first identified in erythrocytes. The discovery of analogous structures at plasma membranes of eukaryotic cells has led to investigations of the role of this spectrin skeleton in many cellular processes. The alphaII-spectrin chain expressed in nucleated cells harbours in its central region several functional motifs, including an SH3 (Src homology 3) domain. RESULTS: Using yeast two-hybrid screening, we have identified EVL [Enabled/VASP (vasodilator-stimulated phosphoprotein)-like protein] as a new potential partner of the alphaII-spectrin SH3 domain. In the present study, we investigated the interaction of the alphaII-spectrin SH3 domain with EVL and compared this with other proteins related to EVL [Mena (mammalian Enabled) and VASP]. We confirmed the in vitro interaction between EVL and the alphaII-spectrin SH3 domain by GST (glutathione S-transferase) pull-down assays, and showed that the co-expression of EVL with the alphaII-spectrin SH3 domain in COS-7 cells resulted in the partial delocalization of the SH3 domain from cytoplasm to filopodia and lamellipodia, where it was co-localized with EVL. In kidney epithelial and COS-7 cells, we demonstrated the co-immunoprecipitation of the alphaII-spectrin chain with over-expressed EVL. Immunofluorescence studies showed that the over-expression of EVL in COS-7 cells promoted the formation of filopodia and lamellipodia, and the expressed EVL was detected in filopodial tips and the leading edge of lamellipodia. In these cells over-expressing EVL, the alphaII-spectrin membrane labelling lagged behind EVL staining in lamellipodia and filopodia, with co-localization of these two stains in the contact area. In kidney epithelial cell lines, focused co-localization of spectrin with expressed EVL was observed in the membrane of the lateral domain, where the cell-cell contacts are reinforced. CONCLUSIONS: The possible link between the spectrin-based skeleton and actin via the EVL protein suggests a new way of integrating the spectrin-based skeleton in areas of dynamic actin reorganization.  相似文献   

19.
In the analysis of endothelial morphogenesis reported here, scanning and transmission electron microscopes and the Nomarski light microscope were used to study both untreated and manipulated eyes of chick embryos. We found that migration of the cells into the corneal area is preceded at stage 22 by a movement of macrophages between the lens and posterior surface of the corneal stroma. At stage 23, endothelial cells move out mainly from the nasal and temporal edges of the eye where they were associated with vascular (primary) mesenchyme. Initially, they migrate through a fibrous matrix which occupies the space between lens and optic lip. When the endothelial cells reach the stroma and capsule of the lens, they can use both these surfaces as substrata, even though they seem to be more adherent to the stroma. By stage 25, the endothelium is complete and covered with fibrous matrix, which now fills and may help form the anterior chamber. The cells, initially mesenchymal, now differentiate to become epithelial (a characteristic of primary mesenchyme). The migrating endothelial cells have extended lamellipodia and filopodia along their leading edges; they show no evidence of ruffling. Moreover, contact inhibition alone does not cause them to monolayer; the presence of the lens is essential to prevent multilayering of the newly formed endothelium. In the discussion, the role of extracellular matrix and tissue boundaries in directing cell migration in vivo is emphasized.  相似文献   

20.
ERYTHROPOIETIC CELL CULTURES FROM CHICK EMBRYOS   总被引:3,自引:0,他引:3       下载免费PDF全文
Erythropoietic cell cultures from very early chick blastoderms survive for several days They show four to seven doublings of the erythroid cells and the appropriate morphological changes from proerythroblasts to mature erythrocytes Cell cycle times are the same as in ovo for the first day of culture, but slow down thereafter The hemoglobins of both the primitive and the definitive red cell series are produced. 5-Bromodeoxyuridine added to the cultures inhibits differentiation and hemoglobin synthesis, though not cell division, but quite soon the cells cease being sensitive The effect of the drug can be reversed by the addition of thymidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号