首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a comprehensive approach to the separation, quantitation, and characterization of phospholipids and lysophospholipids present in complex biological samples. The central feature is a normal-phase HPLC separation of individual phospholipid and lysophospholipid classes. In this single chromatographic step, phospholipids and lysophospholipids are separated and recovered for quantitation by organic phosphate assay and characterization by acyl-group composition. Recovery of phospholipids and lysophospholipids from HPLC averages 80-90%. Isolated phospholipid and lysophospholipid fractions are available for separation of individual molecular species by second-dimension reverse-phase HPLC and characterization of individual molecular species by mass spectrometry.  相似文献   

2.
Phospholipids, including ether phospholipids, are composed of numerous isomeric and isobaric species that have the same backbone and acyl chains. This structural resemblance results in similar fragmentation patterns by collision-induced dissociation of phospholipids regardless of class, yielding complicated MS/MS spectra when isobaric species are analyzed together. Furthermore, the presence of isobaric species can lead to misassignment of species when made solely based on their molecular weights. In this study, we used normal-phase HPLC for ESI-MS/MS analysis of phospholipids from bovine heart mitochondria. Class separation by HPLC eliminates chances for misidentification of isobaric species from different classes of phospholipids. Chromatography yields simple MS/MS spectra without interference from isobaric species, allowing clear identification of peaks corresponding to fragmented ions containing monoacylglycerol backbone derived from losing one acyl chain. Using these fragmented ions, we characterized individual and isomeric species in each class of mitochondrial phospholipids, including unusual species, such as PS, containing an ether linkage and species containing odd-numbered acyl chains in cardiolipin, PS, PI, and PG. We also characterized monolysocardiolipin and dilysocardiolipin, the least abundant but nevertheless important mitochondrial phospholipids. The results clearly show the power of HPLC-MS/MS for identification and characterization of phospholipids, including minor species.  相似文献   

3.
A highly sensitive method was developed for quantitative analysis of phospholipid molecular species. Diradylglycerols prepared from phospholipids with phospholipase C were converted to the anthroyl-diradylglycerol derivatives, which could be separated into molecular species and sensitively quantified by reverse-phase HPLC using a fluorescence detector. All the molecular species of the derivatives had the same peak area per mole, and the peak areas were proportional to the amounts of the derivatives. Quantification could be carried out at the femtomole level.  相似文献   

4.
Neutral lipids are an important class of hydrophobic compounds found in all cells that play critical roles from energy storage to signal transduction. Several distinct structural families make up this class, and within each family there are numbers of individual molecular species. A solvent extraction protocol has been developed to efficiently isolate neutral lipids without complete extraction of more polar phospholipids. Normal-phase HPLC was used for the separation of cholesteryl esters (CEs), monoalkylether diacylglycerols, triacylglycerols, and diacylglycerols in a single HPLC run from this extract. Furthermore, minor lipids such as ubiquinone-9 could be detected in RAW 264.7 cells. Molecular species that make up each neutral lipid class can be analyzed both qualitatively and quantitatively by on-line LC-MS and LC-MS/MS strategies. The quantitation of >20 CE molecular species revealed that challenging RAW 264.7 cells with a Toll-like receptor 4 agonist caused a >20-fold increase in the content of CEs within cells, particularly those CE molecular species that contained saturated (14:0, 16:0, and 18:1) fatty acyl groups. Longer chain CE molecular species did not change in response to the activation of these cells.  相似文献   

5.
A rapid and specific analytical method for simultaneous determination and quantification of seven major phospholipid classes in human blood was developed by normal-phase high-performance liquid chromatography tandem mass spectrometry. The optimal separation was achieved by using mobile phase hexane (A) and 2-propanol with water, formic acid and ammonia as modifiers (B) using an HPLC diol column. Isocratic elution method was used for better repeatability and no balance time. The seven major phospholipid classes in human blood that were detected including phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) phosphatidylcholine (PC), lysophosphatidylcholine (Lyso-PC), and sphingomyelin (SM). That can be separated in this condition. Every phospholipid class contains many molecular species which have similar structure. The structure of phospholipids molecular species was identified by ion-trap MS(n) which produced ion fragments. And the qualification was completed by TOF-MS which shows good accuracy. Through the accurate quantification of one representative phospholipids molecule in each class, a method for simultaneous estimation hundreds of molecular species in seven major classes was established. The intra-day and inter-day precision and recovery had been investigated in detail. The RSD of precision for most compound is below 8% and RE is below 10%. Recovery is almost over 80%. This method was applied to phospholipids disorder related with diabetes nephropathy successfully. The concentrations of most phospholipids for normal people are higher than that for diabetic nephropathy (DN) patients in three phases. For most of phospholipids, with the development of DN the concentration was decreasing.  相似文献   

6.
High performance liquid chromatography (HPLC) was combined with chemical ionization mass spectrometry (CIMS) by the use of a moving-belt interface. The technique was employed for the analysis of naturally occurring phospholipids. Positive and negative ion mass spectra of various phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and sphingomyelin were obtained in the chemical ionization mode with ammonia or methane as the reagent gas. Specific ions for individual phospholipid "bases" were identified. These ions were used in specific ion monitoring of the phospholipids during HPLC-CIMS. CIMS of each phospholipid also provided extensive information on the molecular species of the individual class of phospholipids. Relative abundance of different molecular species of each phospholipid as determined by CIMS agreed well with the results obtained by gas-liquid chromatography. Rat brain phospholipids were analyzed by HPLC-CIMS in about 15 minutes. Routinely, about 5 micrograms of individual phospholipid was analyzed by HPLC-CIMS, however, with specific ion monitoring the method provides a detection capability at the subnanogram level.  相似文献   

7.
Phospholipids and their acyl group composition are important in providing the proper membrane environment for membrane protein structure and function. In particular, the highly unsaturated phospholipids in synaptic plasma membranes in the CNS are known to play an important role in modulating receptor function and neurotransmitter release processes. Apolipoprotein E (apoE) is a major apolipoprotein in the CNS, mediating the transport of cholesterol, phospholipids and their fatty acids, particularly in reparative mechanisms during neuronal injury. This study was performed to determine whether deficiency in the apoE gene contributes to an alteration of the phospholipids in synaptic plasma membranes. Phospholipid molecular species were identified and quantitated by HPLC/electrospray ionization-mass spectrometry. Analysis of the different phospholipid classes in membranes of apoE-deficient and C57BL/6 J mice indicated no obvious differences in the distribution of different phospholipid classes but substantial differences in composition of phospholipid molecular species. Of special interest was the prevalence of phospholipids (phosphatidylcholine, diacyl-phosphatidylethanolamine, and phosphatidylserine) with 22:6n-3 in both the sn-1 and sn-2 positions of SPM and these phospholipid species were significantly higher in apoE-deficient mice as compared to control mice. Since polyunsaturated fatty acids in neurons are mainly supplied by astrocytes, these results revealed a new role for apoE in regulating polyunsaturated phospholipid molecular species in neuronal membranes.  相似文献   

8.
The molecular species composition of rat platelet diacyl-glycerophosphocholine (GPC) was investigated by reverse-phase HPLC and by mass spectrometry. The two methods gave the same very high proportion of fully saturated phospholipids, the 16:0-16:0 and 16:0-18:0 species representing together about 40% of the overall molecular species. [14C]Palmitoyllyso-GPC was found to be acylated by resting platelets in equal amounts into 16:0-16:0 and into 16:0-20:4 species. The acylation rate of this lysophospholipid was increased by 3-fold and 14-fold when platelets were stimulated for 10 min with thrombin and the ionophore A23187, respectively. Essentially the same two molecular species were synthesized upon stimulation but with a higher preference for arachidonate than for palmitate. We investigated the mechanisms responsible for the incorporation of palmitate and arachidonate by examining the enzymatic acylation of [14C]palmitoyllyso-GPC by platelet homogenates. The percentage of the various molecular species formed when CoA, ATP, and Mg2+ were added excludes the CoA, ATP-dependent pathway as being involved in the acylation reactions previously observed. In the absence of ATP, CoA-independent transacylations appear to play a crucial role in the synthesis of the 16:0-20:4 species whereas the addition of CoA greatly favored dipalmitoyl-GPC synthesis. The involvement of CoA-dependent mechanisms in the synthesis of dipalmitoyl-GPC was demonstrated as follows: (i) the labeling in the sn-2 position of the dipalmitoyl-GPC synthesized in the presence of CoA was not modified when free unlabeled palmitic acid was added to the incubation medium and (ii) platelet homogenates were unable to esterify lysolecithin with added labeled palmitic acid in the presence of CoA only.  相似文献   

9.
Monogalactosyl-, digalactosyl-, and sulfoquinovosyl diacylglycerol as well as phosphatidyl glycerol were isolated by conventional TLC and then separately subjected to HPLC for resolution of molecular species. Molecular species emerge in groups from reversed-phase columns during gradient elution. The groups are separated according to the sum of carbon and double bond numbers in fatty acyl pairs in linear relation to elution times. Therefore, it is possible to identify a species group with respect to carbon and double bond numbers by its retention time. The separation is monitored by recording the absorbance at 200 nm which depends on double bond combinations in acyl pairs. Diacylglycerols released from glyco- and phospholipids were separated as rho-anisoyl derivatives according to similar criteria. In this case separation was monitored at 250 nm, at which wavelength the absorbance is directly related to molar proportions. By calculating corrected 200-nm/250-nm absorbance ratios for different molecular species of rho-anisoyl diacylglycerols, relative response factors for different double bond combinations were obtained. The 200-nm absorbances of intact lipid species can be converted to molar proportions by division with these factors.  相似文献   

10.
Choline phosphoglycerides (CPG) represent the major fraction of heart phospholipids. Since depletion of membrane phospholipids and accumulation of lyso-compounds, particularly lysophosphatidylcholines, have been implicated in arrhythmogenesis, it was of great interest to study the composition of this major phospholipid fraction of the heart at a molecular level in an established animal model. The data presented here describe the first report on the detailed chemical examination of CPG and resolution, characterization and quantitative analysis of the molecular species of this phospholipid fraction from porcine heart by high performance liquid chromatography (HPLC). This fraction constitutes 37.5 ± 0.7% (n = 21) of the total phospholipids and upon successive mild acid and alkaline hydrolyses revealed the presence of essentially three subclasses: diacyl-, alkenylacyl-, and alkylacyl glycerophosphorylcholines, in a relative abundance of 57.7 ± 2.2% (n = 8), 37.3 ± 1.3% (n = 8) and 4.6 ± 0.2% (n = 8), respectively. The fourth subclass, dialkyl CPG was found only in minute amounts (0.43 ± 0.05%, n = 8) and the presence of dialkenyl and alkenylalkyl analogues could not be detected. Alternatively, by converting the CPG fraction to benzoate derivatives after phospholipase C digestion, it was possible to isolate and quantitate subclass composition by TLC/spectroscopy or both subclass compositions and molecular species analysis by HPLC directly by a UV detector online with the column. By these techniques, subclass composition was found to be very similar to that obtained by the chemical hydrolysis technique. By HPLC, up to 25 species can be identified and quantitated in each subclass, their identity being confirmed by gas-liquid chromatography, after their isolation from the column. The analyses showed that up to 74% of the diacyl moiety consisted of 16:0–18:2 (34%), 16:0–18:1 (27%), and 18:0–18:2 (13%) species, while the major species of the alkenylacyl moiety were 16:0–18:2 (44%) 16:0–18:1 (13%), 16:0–20:4 (12%) and 18:1–18:2 (9%) making up more than 75% of the total mass of this subclass. The major molecular species of the alkylacyl moiety was 16:0–18:2, constituting up to 47% of this fraction, while others constituted about 10% (16:0–18:1), 9% (18:1–18:2), 8% (16:0–20:4) and 6% (18:0–18:2), making up 80% of the total mass.The ether chain composition of alkylacyl CPG whether determined after isolation of this fraction by the chemical hydrolysis technique or by HPLC was indistinguishable. Similarly, the aliphatic moieties of diradylglycerols, and their subclasses, whether analysed directly or reconstituted from the molecular species data, were very similar in composition, confirming the accuracy of the data and the reproducibility of the technique devised. This also suggests that this method is suitable to distinguish minor changes in the molecular species of CPG in the heart during the early phase of ischemia and in arrhythmias, and should facilitate further studies on the metabolism of the individual species in health and disease.  相似文献   

11.
DNA methylation and development.   总被引:21,自引:0,他引:21  
(1) Isolated rat liver mitochondria were subjected to catalytic hydrogenation using a water-soluble Pd complex and molecular H2. This treatment resulted in a reduction of double bonds on phospholipid acyl chains as judged by gas chromatography of fatty acid methyl esters and HPLC of dinitrobenzoyldiacylglycerols. (2) After hydrogenation, mitochondria lost their ability to hydrolyze endogenous phospholipids in alkaline, Ca2+ containing medium, while phospholipase A2 retained full activity against exogenous substrates, regardless of whether those substrates were hydrogenated or not. (3) Inhibition by hydrogenation of endogenous phospholipid hydrolysis correlated with the loss of polyunsaturated fatty acyls, rather than with changes of the bulk membrane fluidity as measured by ESR and fluorescence studies. (4) These data suggest that the unsaturation of mitochondrial membrane lipids might be important for regulation of phospholipid breakdown by endogenous phospholipases. In particular, polyunsaturated molecular species seem to be involved in making phospholipids accessible to phospholipase A-mediated hydrolysis.  相似文献   

12.
The content of polyunsaturated phosphatidylcholines (PCs) is one of the parameters which regulate membrane functions. Polyunsaturated PCs are preferentially synthesized in the liver by the microsomal enzyme phosphatidylethanolamine N-methyltransferase. The activity of this enzyme may be stimulated in vitro in isolated rat hepatocytes by supplementation with dimethylethanolamine (DME), the polar head group of the precursor of PC along this pathway. The aim of this study was to evaluate in vivo the effect of an intravenous infusion of DME in the rat on the hepatic phospholipid composition. Bile fistula rats were intravenously infused for 15 h with sodium taurocholate (1 mumol/kg per min), with or without the addition of 0.3 mg/kg per min of [14C]DME. The concentration per gram of wet liver of individual phospholipid classes, PC molecular species and of total triacylglycerols, as well as the distribution of radioactivity in liver phospholipids, in rat tissues and body fluids were analyzed. A significant (P less than 0.01) enrichment in PC was found in the liver of DME-infused rats with respect to controls. No differences in the other phospholipid classes were found. DME-infused rats showed a significant (P less than 0.01) decrease in the hepatic concentration of triacylglycerols. At HPLC analysis, the enrichment in PC in DME-infused rats was found to be selectively due to three molecular species (i.e., sn-1 stearoyl/sn-2 arachidonoyl, sn-1 stearoyl/sn-2 linoleoyl, sn-1 stearoyl/sn-2 docosahexanoyl molecular species). In agreement with quantitative data, more than 70% of hepatic radioactivity was recovered in polyunsaturated PC species, with the highest specific activity in the sn-1 stearoyl PCs. The specific activity of hepatic PC approximates that of phosphatidyldimethylethanolamine. This finding together with the effective incorporation of DME in PC suggests that this amino base is methylated after its incorporation into phosphatidyldimethylethanolamine, throughout the stimulation of hepatic N-methyltransferase activity. The selective hepatic enrichment with polyunsaturated PC species after DME infusion may offer a new experimental tool for studying hepatic membrane metabolism.  相似文献   

13.
The molecular species of the major phospholipids from the marine sponges Parasperella psila and Microciona prolifera were studied using chemical hydrolysis, enzymatic degradation and capillary gas chromatography (GC), high performance liquid chromatography (HPLC), desorption chemical ionization (DCI), fast atom bombardment (FAB) combined with collisionally activated decomposition (CAD) mass spectrometry. Two new solvent systems were developed for the isolation of these species from the sponges. Our investigations indicated the existence of unusual symmetrical phospholipids as major components. 1,2-Di-(5Z,9Z)-5,9-hexacosadienoyl-sn-glycero-3-phosph oethanolamine was found in both organisms, while 1,2-di(5Z,9Z,19Z)-5,9,19-hexacosatrienoyl-sn-gly cero-3-phosphoethanolamine was present in M. prolifera, 1,2-Di-(4Z,7Z,10Z,13Z,16Z,19Z)-4,7,1 0,13,16,19-docosahexaenoyl-sn-glycero-3- phosphocholine was the major molecular species in the PC fraction of M. prolifera.  相似文献   

14.
We report the application of high-performance liquid chromatographic (HPLC) separation with ultraviolet detection and direct, on-line, structural analyses by mass spectrometry of glycerobenzoate derivatives from complex mixtures of phospholipid molecular species. Individual phospholipids were resolved from total lipid extracts by thin-layer chromatography (TLC). Diradylglycerols were released from phospholipids by phospholipase-C treatment, converted to diradyl glycerobenzoates and subsequently separated by TLC into subclasses (alk-1-enylacyl, alkylacyl and diacyl types). The molecular species within each subclass were resolved by HPLC with an octadecyl reversed-phase column in acetonitrile—isopropanol (80:20, v/v). Individual peaks were quantitated at the picomole level by measuring absorbance at 230 nm. After post-column addition of methanol—0.2 M ammonium acetate (50:50, v/v), peaks were introduced through the thermospray interface into a VG Masslab 30–250 quadrupole mass spectrometer. Molecular species showed as base peaks the salt adducts of the molecular ion which permitted easy deduction of the overall fatty acyl composition. In addition, the diglyceride fragment of each species was found at [MH — 122]+ and two fragments formed by the loss of the fatty acyl groups (R) in the sn-1 or sn-2 position were found at [M — R1]+ and [M — R2]+, respectively. Since preferential release of either fatty acyl group was observed in positional isomers, the ratio of the intensity of these fragments gave information on the position of the fatty acyl groups in the individual HPLC peaks. We show that the use of on-line mass spectrometry, however, provides easy identification of all molecular species present in a complex phospholipid mixture, even when more than one molecular species is contained in an HPLC peak.  相似文献   

15.
The molecular species composition of rat cerebellar phospholipid subclasses has been studied by HPLC after phospholipase C treatment and dinitrophenyl derivatization. During rat cerebellum development (3-90 days postpartum), cholinephosphoglycerides and ethanolamine phosphoglycerides represented approximately 80% of all phospholipids, with their relative amount changing after 1 month. Among ethanolamine phosphoglycerides, the molar ratio of diacylglycerophosphoethanolamine (diacylGPE) to alkenylacylGPE decreased from approximately 1.4 at 3 days to approximately 0.5 after 10 days. The phospholipids investigated contained up to 12 different molecular species. The rate of accumulation of the various molecular species of diacylglycerophosphocholine (diacylGPC), diacylGPE, and alkenylacylGPE during cerebellar development allowed a classification into three main groups. The overall increase of the molecular species of the first group (6-diacylGPC, 5-diacylGPE, and 4-alkenylacylGPE) was approximately 18-fold between 3 and 90 days, with a faster rate of accumulation between 3 and 30 days. Those of the second group (3-diacylGPC, 5-diacylGPE, and 5-akenylacylGPE) increased by approximately 45-fold during the same developmental period, at a slow rate before day 15 and a faster one thereafter. The molecular species of the third group (3-alkenylacylGPE) increased by greater than 250-fold between 3 and 90 days, at a very slow rate before day 21 and more quickly thereafter. The different rates of accumulation of the components of the three groups during cerebellar development suggest a preferential location of the first group in membranes of neuronal perikaryons, glial cells, and synaptosomal structures. Those of the second group appear to be located in both synaptosomal membranes and myelin sheets, and those of the third group can be considered as myelin markers.  相似文献   

16.
Total lipid extracts from potato tubers and tobacco leaves are separated into lipid classes by two step HPLC using a silicic column. Elution is first performed for 20 min with a programmed linear gradient of two mixed solvents running from 100% of solution A (isopropanol-hexane, 4:3) to 100% of solution B (isopropanol-hexane-water, 8:6:1.5); the column is then eluted with pure solution B in an isocratic mode for 20 min more. The main polar lipids (MGDG, DGDG, PC, PE, PG) from both plant tissues can be collected and further separated into component molecular species on a simplified HPLC system with a C18 column eluted in an isocratic mode with a polar solvent. Molecular species separations are achieved within 35 min; quantifications are made through GLC analysis of attached fatty acids. Three to five main molecular species are thus clearly identified in each lipid class. In potato tuber, phospholipids (PC, PE) 18:2/18:2 species are predominant. In tobacco leaf, six double bond species (18:3/18:3 and 16:3/18:3) are predominant in galactolipids, whereas PC contains a greater number of molecular species varying by their degree of unsaturation (from 18:3/18:3 to 16:0/18:2). Only certain molecular species of PG contain Δ3-trans-hexadecenoic acid.  相似文献   

17.
Mass changes in the various molecular species of phospholipids were determined after stimulation of human platelets with thrombin and collagen. Upon stimulation, every molecular species of phosphatidylinositol and phosphatidylserine was equally hydrolyzed, whereas the molecular species of phosphatidylcholine and diacyl- and alkenylacylphosphatidylethanolamine containing arachidonic acid were selectively hydrolyzed. At low Ca2+ concentrations, which result from mobilization of intracellular Ca2+ stores, phosphatidylinositol, phosphatidylcholine, and diacylphosphatidylethanolamine were hydrolyzed after stimulation with thrombin, whereas only phosphatidylinositol was hydrolyzed with production of thromboxane B2 after stimulation with collagen. At high Ca2+ concentrations, phosphatidylcholine and diacylphosphatidylethanolamine were hydrolyzed after stimulation with collagen, and phosphatidylserine and alkenylacylphosphatidylethanolamine were degraded after stimulation with both thrombin and collagen. [1-14C]Arachidonic acid was heterogeneously incorporated into the individual molecular species of the various phospholipid classes, indicating that the determination of mass is essential for an accurate picture of phospholipid hydrolysis. The data reported here indicate that the Ca2+ concentration affects the differential degradation of phospholipid molecular species in activated human platelets.  相似文献   

18.
The common mobile phase hexane/isopropanol/water used for separation of phospholipids on high-performance liquid chromatography silica columns poses several problems, such as incomplete separation and rapid column deterioration. By inclusion of 5 mM ammonium sulfate in the aqueous phase, we were able to substantially improve the chromatographic resolution and obtain complete separation of phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidylglycerol, and sphingomyelin. In addition, ammonium sulfate prevented column degeneration and greatly improved reproducibility. A new quantitation method for alkenylacyl, alkylacyl, and diacyl forms of phospholipids was also developed based on derivatization with [(3)H]acetic anhydride. Separation and quantitation of the radioactive acetyl diradylglycerols were performed by straight-phase HPLC coupled to a radioactive flow detector and enabled detection of the various ether analogues at the picomole level with high reproducibility. The described methods are mild and nondestructive and can therefore be easily combined with analysis of either molecular species or fatty acid and aldehyde composition of the individual phospholipids.  相似文献   

19.
The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents.  相似文献   

20.
Ether phospholipid molecular species in human platelets   总被引:2,自引:0,他引:2  
Molecular species of diacyl, alkenylacyl, and alkylacyl subclasses in human platelet phospholipids were quantitatively analyzed. Dinitrobenzoyldiradylglycerol derivatives prepared from phosphatidylcholine and phosphatidylethanolamine were separated into subclasses by TLC or normal-phase HPLC. Each subclass consisting of more than 20 molecular species was quantified by reverse-phase HPLC with the eluting solvent of acetonitrile-2-propanol (80 : 20). The retention times of molecular species in the alkenylacyl and alkylacyl subclasses were approximately 1.24 and 1.56 times as long as that of the diacyl type. Phosphatidylcholine contained mostly diacyl subclass (94.5%) and small amounts of alkenylacyl (0.8%) and alkylacyl (4.7%) subclasses, while phosphatidylethanolamine was comprised of 44.2% diacyl, 54.4% alkenylacyl, and 1.4% alkylacyl subclasses. The diacyl subclass of phosphatidylcholine mainly consisted of monoenoic and dienoic molecular species, whereas the other subclasses of phosphatidylcholine and all subclasses of phosphatidylethanolamine were mostly comprised of polyenoic molecular species. The distribution of arachidonic acid-containing molecular species in the diacyl, alkenylacyl, and alkylacyl subclasses were 18.7, 48.2, and 47.9%, respectively, in phosphatidylcholine, and 60.1, 63.0, and 46.9% in phosphatidylethanolamine. Hence, the alkylacyl and alkenylacyl subclasses of phosphatidylcholine seem to play physiological roles different from the diacyl subclass in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号