首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-Acylhomoserine lactones (AHLs) play an important role in regulating virulence factors in pathogenic bacteria. Recently, the enzymatic inactivation of AHLs, which can be used as antibacterial targets, has been identified in several soil bacteria. In this study, strain M664, identified as a Streptomyces sp., was found to secrete an AHL-degrading enzyme into a culture medium. The ahlM gene for AHL degradation from Streptomyces sp. strain M664 was cloned, expressed heterologously in Streptomyces lividans, and purified. The enzyme was found to be a heterodimeric protein with subunits of approximately 60 kDa and 23 kDa. A comparison of AhlM with known AHL-acylases, Ralstonia strain XJ12B AiiD and Pseudomonas aeruginosa PAO1 PvdQ, revealed 35% and 32% identities in the deduced amino acid sequences, respectively. However, AhlM was most similar to the cyclic lipopeptide acylase from Streptomyces sp. strain FERM BP-5809, exhibiting 93% identity. A mass spectrometry analysis demonstrated that AhlM hydrolyzed the amide bond of AHL, releasing homoserine lactone. AhlM exhibited a higher deacylation activity toward AHLs with long acyl chains rather than short acyl chains. Interestingly, AhlM was also found to be capable of degrading penicillin G by deacylation, showing that AhlM has a broad substrate specificity. The addition of AhlM to the growth medium reduced the accumulation of AHLs and decreased the production of virulence factors, including elastase, total protease, and LasA, in P. aeruginosa. Accordingly, these results suggest that AHL-acylase, AhlM could be effectively applied to the control of AHL-mediated pathogenicity.  相似文献   

2.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

3.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other γ-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   

4.
N-acylhomoserine lactones (AHLs) play an important role in regulating virulence factors in pathogenic bacteria. Recently, the enzymatic inactivation of AHLs, which can be used as antibacterial targets, has been identified in several soil bacteria. In this study, strain M664, identified as a Streptomyces sp., was found to secrete an AHL-degrading enzyme into a culture medium. The ahlM gene for AHL degradation from Streptomyces sp. strain M664 was cloned, expressed heterologously in Streptomyces lividans, and purified. The enzyme was found to be a heterodimeric protein with subunits of approximately 60 kDa and 23 kDa. A comparison of AhlM with known AHL-acylases, Ralstonia strain XJ12B AiiD and Pseudomonas aeruginosa PAO1 PvdQ, revealed 35% and 32% identities in the deduced amino acid sequences, respectively. However, AhlM was most similar to the cyclic lipopeptide acylase from Streptomyces sp. strain FERM BP-5809, exhibiting 93% identity. A mass spectrometry analysis demonstrated that AhlM hydrolyzed the amide bond of AHL, releasing homoserine lactone. AhlM exhibited a higher deacylation activity toward AHLs with long acyl chains rather than short acyl chains. Interestingly, AhlM was also found to be capable of degrading penicillin G by deacylation, showing that AhlM has a broad substrate specificity. The addition of AhlM to the growth medium reduced the accumulation of AHLs and decreased the production of virulence factors, including elastase, total protease, and LasA, in P. aeruginosa. Accordingly, these results suggest that AHL-acylase, AhlM could be effectively applied to the control of AHL-mediated pathogenicity.  相似文献   

5.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

6.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signal molecules by many Gram-negative bacteria. We have reported that Chryseobacterium sp. strain StRB126, which was isolated from the root surface of potato, has AHL-degrading activity. In this study, we cloned and characterized the aidC gene from the genomic library of StRB126. AidC has AHL-degrading activity and shows homology to several metallo-β-lactamase proteins from Bacteroidetes, although not to any known AHL-degrading enzymes. Purified AidC, as a maltose-binding fusion protein, showed high degrading activity against all tested AHLs, whether short- or long-chain forms, with or without substitution at carbon 3. High-performance liquid chromatography (HPLC) analysis revealed that AidC functions as an AHL lactonase catalyzing AHL ring opening by hydrolyzing lactones. An assay to determine the effects of covalent and ionic bonding showed that Zn2+ is important to AidC activity both in vitro and in vivo. In addition, the aidC gene could also be PCR amplified from several other Chryseobacterium strains. In conclusion, this study indicated that the aidC gene, encoding a novel AHL lactonase, may be widespread throughout the genus Chryseobacterium. Our results extend the diversity and known bacterial hosts of AHL-degrading enzymes.  相似文献   

7.
A range of gram-negative bacterial species use N-acyl homoserine lactone (AHL) molecules as quorum-sensing signals to regulate different biological functions, including production of virulence factors. AHL is also known as an autoinducer. An autoinducer inactivation gene, aiiA, coding for an AHL lactonase, was cloned from a bacterial isolate, Bacillus sp. strain 240B1. Here we report identification of more than 20 bacterial isolates capable of enzymatic inactivation of AHLs from different sources. Eight isolates showing strong AHL-inactivating enzyme activity were selected for a preliminary taxonomic analysis. Morphological phenotypes and 16S ribosomal DNA sequence analysis indicated that these isolates probably belong to the species Bacillus thuringiensis. Enzymatic analysis with known Bacillus strains confirmed that all of the strains of B. thuringiensis and the closely related species B. cereus and B. mycoides tested produced AHL-inactivating enzymes but B. fusiformis and B. sphaericus strains did not. Nine genes coding for AHL inactivation were cloned either by functional cloning or by a PCR procedure from selected bacterial isolates and strains. Sequence comparison of the gene products and motif analysis showed that the gene products belong to the same family of AHL lactonases.  相似文献   

8.
Seventy strains of the Burkholderia cepacia complex, which currently comprises six genomic species, were tested for their ability to produce N-acylhomoserine lactone (AHL) signal molecules. Using thin layer chromatography in conjunction with a range of AHL biosensors, we show that most strains primarily produce two AHLs, namely N-octanoylhomoserine lactone (C8-HSL) and N-hexanoylhomoserine lactone (C6-HSL). Furthermore, some strains belonging to B. vietnamiensis (genomovar V) produce additional long chain AHL molecules with acyl chains ranging from C10 to C14. For B. vietnamiensis R-921 the structure of the most abundant long chain AHL was confirmed as N-decanoylhomoserine lactone (C10-HSL) by liquid chromatography-mass spectrometry (LC-MS) in combination with total chemical synthesis. Interestingly, a number of strains, most notably all representatives of B. multivorans (genomovar II), did not produce AHLs at least under the growth conditions used in this study. All strains were also screened for the production of extracellular lipase, chitinase, protease, and siderophores. However, no correlation between the AHL production and the synthesis of these exoproducts was apparent. Southern blot analysis showed that all the B. cepacia complex strains investigated, including the AHL-negative strains, possess genes homologous to the C8-HSL synthase cepI and to cepR, which encodes the cognate receptor protein. The nucleotide sequence of the cepI and cepR genes from one representative strain from each of the six genomovars was determined. Furthermore, the cepI genes from the different genomovars were expressed in Escherichia coli and it is demonstrated that all genes encode functional proteins that direct the synthesis of C8-HSL and C6-HSL. Given that cepI from the B. multivorans strain encodes a functional AHL synthase, yet detectable levels of AHLs were not produced by the wild-type, this suggests that additional regulatory functions may be present in members of this genomovar that negatively affect expression of cepI.  相似文献   

9.
N-Acylhomoserine lactones (AHLs) function as quorum-sensing signaling molecules in many Gram-negative bacteria. We isolated a total of 672 bacterial strains from activated sludge obtained from seven sewage treatment plants in Tochigi Prefecture, Japan, and screened for AHL-producing and degrading strains. Isolates (n=107) stimulated AHL-mediated purple pigment production in AHL reporter strains Chromobacterium violaceum CV026 and VIR07. Based on their 16S rRNA gene sequences, most of these AHL-producing isolates were assigned to the genus Aeromonas, and they were divided into six groups. Isolates (n=46) degraded N-decanoyl-L-homoserine lactone (C10-HSL) within 24 h. Based on their 16S rRNA gene sequences, the most dominant AHL-degrading isolates were assigned to the genus Acinetobacter and divided into six groups. Strains Ooi24, Omo91, and Uzu81, which showed higher C10-HSL-degrading activity, showed putative AHL-acylase activity.  相似文献   

10.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   

11.
Aims: To investigate roles of quorum‐sensing (QS) system in Acinetobacter sp. strain DR1 and rifampicin‐resistant variant (hereinafter DR1R). Methods and Results: The DR1 strain generated three putative acyl homoserine lactones (AHLs), while the DR1R produced only one signal and QS signal production was abrogated in the aqsI (LuxI homolog) mutant. The hexadecane‐degradation and biofilm‐formation capabilities of DR1, DR1R, and aqsI mutants were compared, along with their proteomic data. Proteomics analysis revealed that the AHL lactonase responsible for degrading QS signal was highly upregulated in both DR1R and aqsI mutant, also showed that several proteins, including ppGpp synthase, histidine kinase sensors, might be under the control of QS signalling. Interestingly, biofilm‐formation and hexadecane‐biodegradation abilities were reduced more profoundly in the aqsI mutant. These altered phenotypes of the aqsI mutant were restored via the addition of free wild‐type cell supernatant and exogenous C12‐AHL. Conclusions: The QS system in strain DR1 contributes to hexadecane degradation and biofilm formation. Significance and Impact of the Study: This is the first report to demonstrate that a specific QS signal appears to be a critical factor for hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1.  相似文献   

12.
The N-acyl homoserine lactone (AHL) quorum-sensing signals produced by Sinorhizobium meliloti strains AK631 and 1021 when cultured in a defined glucose-nitrate medium were identified by gas chromatography/mass spectrometry (GC/MS) and electrospray ionization tandem mass spectrometry (ESI MS/MS). Both strains synthesized several long-chain AHLs. Defined medium cultures of strain AK631 synthesized a complex mixture of AHLs with short acyl side chains. Strain 1021 produced no short-chain AHLs when grown on defined medium and made a somewhat different set of long-chain AHLs than previously reported for cultures in rich medium. While the two strains produced several AHLs in common, the differences in AHLs produced suggest that there may be significant differences in their patterns of quorum-sensing regulation.  相似文献   

13.
It has been reported that an indigenous quorum quenching bacterium, Rhodococcus sp. BH4, which was isolated from a real plant of membrane bioreactor (MBR) has promising potential to control biofouling in MBR. However, little is known about quorum quenching mechanisms by the strain BH4. In this study, various characteristics of strain BH4 were investigated to elucidate its behavior in more detail in the mixed liquor of MBR. The N-acyl homoserine lactone hydrolase (AHL–lactonase) gene of strain BH4 showed a high degree of identity to qsdA in Rhodococcus erythropolis W2. The LC-ESI-MS analysis of the degradation product by strain BH4 confirmed that it inactivated AHL activity by hydrolyzing the lactone bond of AHL. It degraded a wide range of N-acyl homoserine lactones (AHLs), but there was a large difference in the degradation rate of each AHL compared to other reported AHL–lactonase-producing strains belonging to Rhodococcus genus. Its quorum quenching activity was confirmed not only in the Luria-Bertani medium, but also in the synthetic wastewater. Furthermore, the amount of strain BH4 encapsulated in the vessel as well as the material of the vessel substantially affected the quorum quenching activity of strain BH4, which provides useful information, particularly for the biofouling control in a real MBR plant from an engineering point of view.  相似文献   

14.
Aim: To (i) identify chronic wound bacteria and to test their ability to produce acyl‐homoserine‐lactones (AHLs) and autoinducer‐2 (AI‐2) cell–cell signalling molecules and (ii) determine whether chronic wound debridement samples might contain these molecules. Methods and Results: Partial 16S rRNA gene sequencing revealed the identity of 46 chronic wound strains belonging to nine genera. Using bio‐reporter assays, 69·6% of the chronic wound strains were inferred to produce AI‐2, while 19·6% were inferred to produce AHL molecules. At least one strain from every genus, except those belonging to the genera Acinetobacter and Pseudomonas, were indicated to produce AI‐2. Production of AI‐2 in batch cultures was growth‐phase dependent. Cross‐feeding assays demonstrated that AHLs were produced by Acinetobacter spp., Pseudomonas aeruginosa and Serratia marcescens. Independent from studies of the bacterial species isolated from wounds, AHL and/or AI‐2 signalling molecules were detected in 21 of 30 debridement samples of unknown microbial composition. Conclusion: Chronic wound bacteria produce cell–cell signalling molecules. Based on our findings, we hypothesize that resident species generally produce AI‐2 molecules, and aggressive transient species associated with chronic wounds typically produce AHLs. Both these classes of cell–cell signals are indicated to be present in human chronic wounds. Significance and Impact of the Study: Interbacterial cell–cell signalling may be an important factor influencing wound development and if this is the case, the presence of AHLs and AI‐2 could be used as a predictor of wound severity. Manipulation of cell–cell signalling may provide a novel strategy for improving wound healing.  相似文献   

15.
The presence and diversity of acyl homoserine lactone (AHL)-producers in an urban river biofilm were investigated during 60-day biofilm formation. AHL biosensors detected the presence of AHL-producers in 1–60-day river biofilms. Screening for AHL-producers resulted in 17 Aeromonas spp., 3 Pseudomonas spp., 3 Ensifer spp., and 1 Acinetobacter sp. Among these isolates, six of them were closely related to Acinetobacter tjernbergiae, Aeromonas allosaccharophila, Aeromonas aquariorum, Aeromonas jandaei, Pseudomonas panipatensis, and Ensifer adhaerens and represented novel AHL-producing species. Thin layer chromatography revealed that C4-homoserine lactone was prevailing in Aeromonas spp., whereas C6- and C8-homoserine lactones and their derivatives were prevailing in other strains. Using degenerate primers, novel AHL synthetase genes from the three Ensifer spp. were successfully amplified. This study reports for the first time the diversity of AHL-producers from a river biofilm and the variety of novel AHL synthetase genes in Ensifer group.  相似文献   

16.

Background

Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition.

Methodology/Principal Findings

Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4.

Significance

We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and revealed its potential application as an anti-virulence agent against bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum based on quorum quenching mechanism.  相似文献   

17.
Bioluminescence is a common phenotype in marine bacteria, such as Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets, which spoil due to growth of Photobacterium phosphoreum. Interestingly, AHLs were produced by 13 nonbioluminescent strains of P. phosphoreum isolated from the product. Of 177 strains of P. phosphoreum (including 18 isolates from this study), none of 74 bioluminescent strains elicited a reaction in the AHL monitor, whereas 48 of 103 nonbioluminescent strains did produce AHLs. AHLs were also detected in Aeromonas spp., but not in Shewanella strains. Thin-layer chromatographic profiles of cod extracts and P. phosphoreum culture supernatants identified a molecule similar in relative mobility (Rf value) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non-AHL-producing strain of P. phosphoreum) was strongly up-regulated during growth, whereas AHL production in a nonbioluminescent strain of P. phosphoreum appeared constitutive. AHLs apparently did not influence bioluminescence, as the addition of neither synthetic AHLs nor supernatants delayed or reduced this phenotype in luminescent strains of P. phosphoreum. The phenotypes of nonbioluminescent P. phosphoreum strains regulated by AHLs remains to be elucidated.  相似文献   

18.

Background

Bacteria use N-acyl homoserine lactone (AHL) molecules to regulate the expression of genes in a density-dependent manner. Several biosensors have been developed and engineered to detect the presence of all types of AHLs.

Results

In this study, we describe the usefulness of a traI-luxCDABE-based biosensor to quickly detect AHLs from previously characterized mutants of Burkholderia cenocepacia and Pseudomonas aeruginosa in both liquid and soft-agar co-culture assays in a high-throughput manner. The technique uses a co-culture system where the strain producing the AHLs is grown simultaneously with the reporter strain. Use of this assay in liquid co-culture allows the measurement of AHL activity in real time over growth. We tested this assay with Burkholderia cenocepacia and Pseudomonas aeruginosa but it should be applicable to a broad range of gram negative species that produce AHLs.

Conclusion

The co-culture assays described enable the detection of AHL production in both P. aeruginosa and B. cenocepacia and should be applicable to AHL analysis in other bacterial species. The high-throughput adaptation of the liquid co-culture assay could facilitate the screening of large libraries for the identification of mutants or compounds that block the synthesis or activity of AHLs.  相似文献   

19.
20.
Zoospores of the eukaryotic green seaweed Ulva respond to bacterial N-acylhomoserine lactone (AHL) quorum sensing signal molecules for the selection of surface sites for permanent attachment. In this study we have investigated the production and destruction of AHLs in biofilms of the AHL-producing marine bacterium, Vibrio anguillarum and their stability in seawater. While wild type V. anguillarum NB10 was a strong attractor of zoospores, inactivation of AHL production in this strain by either expressing the recombinant Bacillus lactonase coding gene aiiA, or by mutating the AHL biosynthetic genes, resulted in the abolition of zoospore attraction. In seawater, with a pH of 8.2, the degradation of AHL molecules was temperature-dependent, indicating that the AHLs produced by marine bacterial biofilms have short half-lives. The Ulva zoospores sensed a range of different AHL molecules and in particular more zoospores settled on surfaces releasing AHLs with longer (>six carbons) N-linked acyl chains. However, this finding is likely to be influenced by the differential diffusion rates of AHLs from the experimental surface matrix. Molecules with longer N-acyl chains, such as N-(3-oxodecanoyl)- L-homoserine lactone, diffused more slowly than those with shorter N-acyl chains such as N-(3-hydroxy-hexanoyl)- L-homoserine lactone. Image analysis using GFP-tagged V. anguillarum biofilms revealed that spores settle directly on bacterial cells and in particular on microcolonies which we show are sites of concentrated AHL production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号