共查询到20条相似文献,搜索用时 0 毫秒
1.
Hiroyuki Arai Takuro Kawakami Tatsuya Osamura Takehiro Hirai Yoshiaki Sakai Masaharu Ishii 《Journal of bacteriology》2014,196(24):4206-4215
The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo3-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb3-type cytochrome c oxidases (cbb3-1 and cbb3-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb3-1 and cbb3-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb3-1 and cbb3-2 are high-affinity enzymes. Although cbb3-1 and cbb3-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb3-1 and cbb3-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb3-1 and cbb3-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa. 相似文献
2.
Masakaze Hamada Masanori Toyofuku Tomoki Miyano Nobuhiko Nomura 《Journal of bacteriology》2014,196(22):3881-3889
For bacteria, many studies have focused on the role of respiratory enzymes in energy conservation; however, their effect on cell behavior is poorly understood. Pseudomonas aeruginosa can perform both aerobic respiration and denitrification. Previous studies demonstrated that cbb3-type cytochrome c oxidases that support aerobic respiration are more highly expressed in P. aeruginosa under anoxic conditions than are other aerobic respiratory enzymes. However, little is known about their role under such conditions. In this study, it was shown that cbb3 oxidases of P. aeruginosa PAO1 alter anaerobic growth, the denitrification process, and cell morphology under anoxic conditions. Furthermore, biofilm formation was promoted by the cbb3 oxidases under anoxic conditions. cbb3 oxidases led to the accumulation of nitric oxide (NO), which is produced during denitrification. Cell elongation induced by NO accumulation was reported to be required for robust biofilm formation of P. aeruginosa PAO1 under anoxic conditions. Our data show that cbb3 oxidases promote cell elongation by inducing NO accumulation during the denitrification process, which further leads to robust biofilms. Our findings show that cbb3 oxidases, which have been well studied as aerobic respiratory enzymes, are also involved in denitrification and influence the lifestyle of P. aeruginosa PAO1 under anoxic conditions. 相似文献
3.
In studies of the kinetics of oxygen uptake by glucose-stimulated Chlorella pyrenoidosa, two terminal oxidases could be distinguished. The cytochrome oxidase of Chlorella has a Km (O2) of 2.1 ± 0.3 μm, while the second oxidase has a Km (O2) of 6.7 ± 0.5 μm, and a maximum capacity about one-quarter of that of the cytochrome system. The identity of the second oxidase is unknown, but it is not inhibited by carbon monoxide, 1 mm cyanide, 0.1 mm thiocyanate, or 1 mm 8-hydroxyquinoline. In fresh cultures, the second oxidase accounts for at most 35% of the total oxygen uptake. 相似文献
4.
Sébastien Le Laz Arlette Kpebe Marielle Bauzan Sabrina Lignon Marc Rousset Myriam Brugna 《PloS one》2014,9(1)
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb
3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb
3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb
3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa
3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa
3-type oxidase in S. oneidensis MR-1 are discussed. 相似文献
5.
Kopper PH 《Journal of bacteriology》1947,54(3):359-362
6.
In Pseudomonas aeruginosa, the dual-specificity enzyme phosphomannomutase/phosphoglucomutase catalyzes the transfer of a phosphoryl group from serine 108 to the hydroxyl group at the 1-position of the substrate, either mannose 6-P or glucose 6-P. The enzyme must then catalyze transfer of the phosphoryl group on the 6-position of the substrate back to the enzyme. Each phosphoryl transfer is expected to require general acid-base catalysis, provided by amino acid residues at the enzyme active site. An extensive survey of the active site residues by site-directed mutagenesis failed to identify a single key residue that mediates the proton transfers. Mutagenesis of active site residues Arg20, Lys118, Arg247, His308, and His329 to residues that do not contain ionizable groups produced proteins for which V(max) was reduced to 4-12% of that of the wild type. The fact that no single residue decreased catalytic activity more significantly, and that several residues had similar effects on V(max), suggested that the ensemble of active site amino acids act by creating positive electrostatic potential, which serves to depress the pK of the substrate hydroxyl group so that it binds in ionized form at the active site. In this way, the necessity of positioning the reactive hydroxyl group near a specific amino acid residue is avoided, which may explain how the enzyme is able to promote catalysis of both phosphoryl transfers, even though the 1- and 6-positions do not occupy precisely the same position when the substrate binds in the two different orientations in the active site. When Ser108 is mutated, the enzyme retains a surprising amount of activity, which has led to the suggestion that an alternative residue becomes phosphorylated in the absence of Ser108. (31)P NMR spectra of the S108A protein confirm that it is phosphorylated. Although the S108A/H329N protein had no detectable catalytic activity, the (31)P NMR spectra were not consistent with a phosphohistidine residue. 相似文献
7.
3-Methylindole (3MI), an N-heterocyclic aromatic compound also called skatole, is associated with animal waste and industrial processing. A pure culture of bacterium capable of using 3MI as the sole source of carbon and energy was isolated from mangrove sediment using an enrichment technique and identified as Pseudomonas aeruginosa Gs based on 16S rDNA sequence. Microbial degradation of 3MI was studied in batch culture experiments for several factors, including initial substrate concentrations, pH, and salinity. The optimum pH and salinity was 7.0 and 5‰, respectively. Degradation of 3MI by P. aeruginosa Gs was quantified by reversed-phase high-performance liquid chromatography. Two metabolites of 3MI degradation were detected and proposed to be indoline-3-carboxylic acid and indoline-3-ol based on data obtained from HPLC/MS. Our results suggest that 3MI can be rapidly degraded by indigenous microorganisms found in mangrove sediment. 相似文献
8.
Trutko S. M. Evtushenko L. I. Dorofeeva L. V. Shlyapnikov M. G. Gavrish E. Yu. Suzina N. E. Akimenko V. K. 《Microbiology》2003,72(3):259-265
The nature of terminal oxidases in representatives of four different genera of the family Microbacteriaceae was studied. It was found that the late-logarithmic and early-stationary cells of all of the investigated strains of the genera Plantibacter and Okibacterium contain the aa
3-type cytochrome oxidase. Bacteria of the genera Rathayibacter and Agreia synthesize three oxidases, the bb
3- and aa
3-type cytochrome oxidases and nonheme cyanide-resistant oxidase, in proportions dependent on the cultivation conditions and the growth phase. Oxygen deficiency in the cultivation medium induces the synthesis of the bd-type oxidase in all of the microorganisms studied. The data obtained provide evidence that the type of terminal oxidases, along with the known chemotaxonomic characteristics, may serve to differentiate the genera of the family Microbacteriaceae at the phenotypic level. 相似文献
9.
The relative contributions of cytochrome (Cyt) oxidase, cyanide-insensitiveoxidase and residual oxidase to the total respiration of isolatedleaf cells were determined in order to integrate them into amathematical model. During cell incubation, the contributionof cyanide-insensitive oxidase decreased whereas the latentactivity of the enzyme increased. Carbonyl cyanide m-chlorophenyl-hydrazonemainly stimulated the Cyt oxidase activity but did not releasethe latent activity of cyanide-insemitive oxidase. (Received May 10, 1983; Accepted September 21, 1983) 相似文献
10.
11.
12.
SYNOPSIS. Steady-state oxygen kinetics of Trypanosoma mega reveal the presence of 3 oxidases. These include an oxidase which is sensitive to salicylhydroxamic acid (SHAM) but insensitive to sodium azide. This oxidase could be the L-α glycerophosphate oxidase present in bloodstream trypanosomes. In addition, an oxidase is present which is azide-sensitive but SHAM-insensitive. This oxidase is inhibited by CO and is probably cytochrome aa3. A 3rd oxidase is insensitive to both azide and SHAM but is inhibited by CO and is possibly cytochrome o. Reciprocal plots of T. mega reveal the presence of 2 oxidases that are inhibited by CO. These results are discussed in the light of previous evidence suggesting the presence of several oxidases and a branched electron transport system in T. mega. 相似文献
13.
Biodegradation of Chloromethane by Pseudomonas aeruginosa Strain NB1 under Nitrate-Reducing and Aerobic Conditions
下载免费PDF全文

David L. Freedman Meghna Swamy Nathan C. Bell Mathew F. Verce 《Applied microbiology》2004,70(8):4629-4634
Pseudomonas aeruginosa strain NB1 uses chloromethane (CM) as its sole source of carbon and energy under nitrate-reducing and aerobic conditions. The observed yield of NB1 was 0.20 (±0.06) (mean ± standard deviation) and 0.28 (±0.01) mg of total suspended solids (TSS) mg of CM−1 under anoxic and aerobic conditions, respectively. The stoichiometry of nitrate consumption was 0.75 (±0.10) electron equivalents (eeq) of NO3− per eeq of CM, which is consistent with the yield when it is expressed on an eeq basis. Nitrate was stoichiometrically converted to dinitrogen (0.51 ± 0.05 mol of N2 per mol of NO3−). The stoichiometry of oxygen use with CM (0.85 ± 0.21 eeq of O2 per eeq of CM) was also consistent with the aerobic yield. Stoichiometric release of chloride and minimal accumulation of soluble metabolic products (measured as chemical oxygen demand) following CM consumption, under anoxic and aerobic conditions, indicated complete biodegradation of CM. Acetylene did not inhibit CM use under aerobic conditions, implying that a monooxygenase was not involved in initiating aerobic CM metabolism. Under anoxic conditions, the maximum specific CM utilization rate (k) for NB1 was 5.01 (±0.06) μmol of CM mg of TSS−1 day−1, the maximum specific growth rate (μmax) was 0.0506 day−1, and the Monod half-saturation coefficient (Ks) was 0.067 (±0.004) μM. Under aerobic conditions, the values for k, μmax, and Ks were 10.7 (±0.11) μmol of CM mg of TSS−1 day−1, 0.145 day−1, and 0.93 (±0.042) μM, respectively, indicating that NB1 used CM faster under aerobic conditions. Strain NB1 also grew on methanol, ethanol, and acetate under denitrifying and aerobic conditions, but not on methane, formate, or dichloromethane. 相似文献
14.
15.
Terminal truncations in amp C beta-lactamase from a clinical isolate of Pseudomonas aeruginosa. 总被引:2,自引:0,他引:2
AmpC beta-lactamases from strains of Pseudomonas aeruginosa have previously been shown to be heterogeneous with respect to their isoelectric point (pI). In order to elucidate the origin of this heterogeneity enzymes were isolated from a clinical isolate of a multiresistant P. aeruginosa strain and biochemically characterized. The purification was accomplished in four chromatographic steps comprising dye-affinity, size-exclusion, hydrophobic interaction chromatography, and chromatofocusing; this resulted in five forms with pI values of 9.1, 8.7, 8.3, 8.2, and 7.6. When analysed by SDS/PAGE and agarose IEF each separated beta-lactamase appeared to be both size- and charge-homogeneous. The specific activities of the variants were very similar. MS of each isolated beta-lactamase form showed minor differences in molecular mass (range 40.0-40.8 kDa). MS of the beta-lactamase with a pI of 8.2 demonstrated the presence of two subforms. The N-terminal sequences of three of the beta-lactamases were identical to the published sequence [Lodge, J.M. , Minchin, S.D., Piddock, L.J.V. & Busby, J.W. (1990) Biochem. J. 272, 627-631], while two variants were truncated by two amino-acid residues, one of which was acidic. The previously published sequence contains an alanine as the ultimate residue, but two of the beta-lactamases showed a substitution of Ala371 for arginine, whereas in the remaining forms C-terminal truncations by one and three residues were found. Our results indicate that the P. aeruginosa strain does not harbour multiple copies of the ampC gene, but rather that the five beta-lactamase isoforms are products of a single structural gene. The combinations of the identified N- and/or C-terminal truncations explained the multiple pI values of the beta-lactamase isoforms. 相似文献
16.
17.
An investigation of the ligand-binding properties of Pseudomonas aeruginosa nitrite reductase. 总被引:2,自引:0,他引:2
下载免费PDF全文

The low-temperature e.p.r. and m.c.d. (magnetic-circular-dichroism) spectra of Pseudomonas aeruginosa nitrite reductase, together with those of its partially and fully cyanide-bound derivatives, were investigated. The m.c.d. spectra in the range 600-2000 nm indicate that the native axial ligands to haem c are histidine and methionine, and furthermore that it is the methionine ligand that must be displaced before cyanide binding at this haem. The m.c.d. spectra in the range 1000-2000 nm contain no charge-transfer bands arising from low-spin ferric haem d1, a chlorin. New optical transitions in the region 700-850 nm were found for the cyanide adduct of haem d1. The g-values of haem d1 in the native enzyme are 2.51, 2.43 and 1.71, suggesting co-ordination by two histidine ligands in the oxidized state. There is clear evidence in the e.p.r. data of an interaction between the c and d1 haem groups. This is not apparent in the optical spectra. The results are interpreted in terms of haem groups that are remote from each other, their interaction being mediated through protein conformational changes. The possible implications of this in relation to reduction processes catalysed by the enzyme are considered. 相似文献
18.
Maianskiĭ AN Chebotar' IV Rudneva EI Chistiakova VP 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》2012,(1):3-8
Definition of the biofilm process as one of the types of intercellular bacterial communications is presented. The modern data concerning the structure of the Pseudomonas aeruginosa biofilm matrix and genetic mechanisms necessary for its production are described. Active and passive rejections of biofilm bacteria, which are the basis of bacterial spreading to new surfaces, are discussed. The complexity and chain type of the reactions associated with biofilm formation are emphasized. 相似文献
19.
Akira Yanai Keijiro Kato Teruhiko Beppu Kei Arima 《Bioscience, biotechnology, and biochemistry》2013,77(8):1505-1508
A practical method for preparing peptidoglycan from Ps. aeruginosa and E. coli was devised. After bacterial cells were dissolved in boiling 4% SDS solution, peptidoglycan was collected and washed with water by centrifugation. Peptidoglycan was treated further with pronase and lyophilized. The final preparation of peptidoglycan from Ps. aeruginosa appeared as a filmy coagulation in electron micrograph and its amino acid composition was determined as follows: Glu/Ala/A2pm/Mur/GlcN (100/183/104/61/98). The lysozyme digest showed the same pattern as that of E. coli peptidoglycan. N-Terminal analysis suggested that about half of the peptide chains was interbridged by the peptide bond between Ala and A2pm. The probable ratio of muropeptides in the peptidoglycan was estimated. 相似文献
20.