首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Even in clonal bacterial cultures, individual bacteria can show substantial stochastic variation, leading to pitfalls in the interpretation of data derived from millions of cells in a culture. In this issue of the Journal of Bacteriology, as part of their study on osmoadaptation in a cyanobacterium, Nanatani et al. describe employing an ingenious microfluidic device that gently cages individual cells (J Bacteriol 197:676–687, 2015, http://dx.doi.org/10.1128/JB.02276-14). The device is a welcome addition to the toolkit available to probe the responses of individual cells to environmental cues.  相似文献   

3.
Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane''s cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.  相似文献   

4.
There are numerous ways by which cyclic dimeric GMP (c-di-GMP) inhibits motility. Kuchma et al. (S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, and G. A. O''Toole, J. Bacteriol. 197:420–430, 2015, http://dx.doi.org/10.1128/JB.02130-14) offer a new, previously unseen way of swarming motility inhibition in Pseudomonas aeruginosa PA14. This bacterium possesses a single flagellum with one rotor and two sets of stators, only one of which can provide torque for swarming. The researchers discovered that elevated levels of c-di-GMP inhibit swarming by skewing stator selection in favor of the nonfunctional, “bad” stators.  相似文献   

5.
6.
Van Hofwegen et al. demonstrated that Escherichia coli rapidly evolves the ability to use citrate when long selective periods are provided (D. J. Van Hofwegen, C. J. Hovde, and S. A. Minnich, J Bacteriol 198:1022–1034, 2016, http://dx.doi.org/10.1128/JB.00831-15). This contrasts with the extreme delay (15 years of daily transfers) seen in the long-term evolution experiments of Lenski and coworkers. Their idea of “historical contingency” may require reinterpretation. Rapid evolution seems to involve selection for duplications of the whole cit locus that are too unstable to contribute when selection is provided in short pulses.  相似文献   

7.
The importance of cyclic di-GMP (c-di-GMP) and its control of biofilm matrix assembly and production has been a focal point of researchers in recent history. In this issue, Cooley et al. (Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR, O’Toole GA, Sondermann H, J Bacteriol 198:66–77, http://dx.doi.org/10.1128/JB.00369-15) demonstrate that two c-di-GMP controlled features of Pseudomonas aeruginosa, the periplasmic protease LapG and the surface adhesin CdrA, are linked. CdrA is shown to be a substrate of LapG, with LapG activity controlled by intracellular c-di-GMP levels. This commentary discusses the significance of this finding.  相似文献   

8.
In this issue of the Journal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629–3644, 2015, http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restricted Escherichia coli grown with sublethal H2O2 when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.  相似文献   

9.
Bacteria are known to consume some sugars over others, although recent work reported by Koirala and colleagues in this issue of the Journal of Bacteriology (S. Koirala, X. Wang, and C. V. Rao, J Bacteriol 198:386–393, 2016, http://dx.doi.org/10.1128/JB.00709-15) revealed that individual cells do not necessarily follow this hierarchy. By studying the preferential consumption of l-arabinose over d-xylose in Escherichia coli, those authors found that subpopulations consume one, the other, or both sugars through cross-repression between utilization pathways. Their findings challenge classic assertions about established hierarchies and can guide efforts to engineer the simultaneous utilization of multiple sugars.  相似文献   

10.
Ribosomes employ a “kinetic discrimination” mechanism, in which correct substrates are incorporated more rapidly than incorrect ones. The structural basis of this mechanism may involve 30S domain closure, a global conformational change that coincides with codon recognition. In a direct screen for fidelity-altering mutations, Agarwal and coworkers (D. Agarwal, D. Kamath, S. T. Gregory, and M. O''Connor, J Bacteriol 197:1017–1025, 2015, doi:10.1128/JB.02485-14) isolated mutations that progressively truncate the C terminus of S4. All of these promote miscoding and undoubtedly destabilize the S4-S5 interface, consistent with the domain closure model.  相似文献   

11.
Mg2+ and K+ are the prevalent di- and monovalent cations inside the cells in all three domains, playing a dominant role in structure and function of biological macromolecules. Ribosomes bind a substantial fraction of total Mg2+ and K+ cations. In this issue of the Journal of Bacteriology, Akanuma and coworkers (G. Akanuma et al., J. Bacteriol. 196:3820–3830, 2014, doi:10.1128/JB.01896-14) report a surprising genetic link between ribosome amounts per cell and the intracellular Mg2+ concentrations.  相似文献   

12.
Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was established as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spirochete together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

13.
The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the transmission, infectious, and persistent morphotype, and the outermost exosporium layer is likely to play a major role in spore-host interactions during the first contact of C. difficile spores with the host and for spore persistence during recurrent episodes of infection. Although some studies on the biology of the exosporium have been conducted (J. Barra-Carrasco et al., J Bacteriol 195:3863–3875, 2013, http://dx.doi.org/10.1128/JB.00369-13; J. Phetcharaburanin et al., Mol Microbiol 92:1025–1038, 2014, http://dx.doi.org/10.1111/mmi.12611), there is a lack of information on the ultrastructural variability and stability of this layer. In this work, using transmission electron micrographs, we analyzed the variability of the spore''s outermost layers in various strains and found distinctive variability in the ultrastructural morphotype of the exosporium within and between strains. Through transmission electron micrographs, we observed that although this layer was stable during spore purification, it was partially lost after 6 months of storage at room temperature. These observations were confirmed by indirect immunofluorescence microscopy, where a significant decrease in the levels of two exosporium markers, the N-terminal domain of BclA1 and CdeC, was observed. It is also noteworthy that the presence of the exosporium marker CdeC on spores obtained from C. difficile biofilms depended on the biofilm culture conditions and the strain used. Collectively, these results provide information on the heterogeneity and stability of the exosporium surface of C. difficile spores. These findings have direct implications and should be considered in the development of novel methods to diagnose and/or remove C. difficile spores by using exosporium proteins as targets.  相似文献   

14.
Kapusinszky et al. (J Virol 89:8152–8161, 2015, http://dx.doi.org/10.1128/JVI.00671-15) report that host population bottlenecks may result in pathogen extinction, which provides a compelling argument for an alternative approach to vaccination for the control of virus spread. By comparing the prevalence levels of three viral pathogens in two populations of African green monkeys (AGMs) (Chlorocebus sabaeus) from Africa and two Caribbean Islands, they convincingly show that a major host bottleneck resulted in the eradication of select pathogens from a given host.  相似文献   

15.
Halomonas zhanjiangensis Chen et al. 2009 is a member of the genus Halomonas, family Halomonadaceae, class Gammaproteobacteria. Representatives of the genus Halomonas are a group of halophilic bacteria often isolated from salty environments. The type strain H. zhanjiangensis JSM 078169T was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. The genome of strain JSM 078169T is the fourteenth sequenced genome in the genus Halomonas and the fifteenth in the family Halomonadaceae. The other thirteen genomes from the genus Halomonas are H. halocynthiae, H. venusta, H. alkaliphila, H. lutea, H. anticariensis, H. jeotgali, H. titanicae, H. desiderata, H. smyrnensis, H. salifodinae, H. boliviensis, H. elongata and H stevensii. Here, we describe the features of strain JSM 078169T, together with the complete genome sequence and annotation from a culture of DSM 21076T. The 4,060,520 bp long draft genome consists of 17 scaffolds with the 3,659 protein-coding and 80 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.  相似文献   

16.
17.
18.
Mycobacterium simiae is a non-tuberculosis mycobacterium causing pulmonary infections in both immunocompetent and imunocompromized patients. We announce the draft genome sequence of M. simiae DSM 44165T. The 5,782,968-bp long genome with 65.15% GC content (one chromosome, no plasmid) contains 5,727 open reading frames (33% with unknown function and 11 ORFs sizing more than 5000 -bp), three rRNA operons, 52 tRNA, one 66-bp tmRNA matching with tmRNA tags from Mycobacterium avium, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium microti, Mycobacterium marinum, and Mycobacterium africanum and 389 DNA repetitive sequences. Comparing ORFs and size distribution between M. simiae and five other Mycobacterium species M. simiae clustered with M. abscessus and M. smegmatis. A 40-kb prophage was predicted in addition to two prophage-like elements, 7-kb and 18-kb in size, but no mycobacteriophage was seen after the observation of 106 M. simiae cells. Fifteen putative CRISPRs were found. Three genes were predicted to encode resistance to aminoglycosides, betalactams and macrolide-lincosamide-streptogramin B. A total of 163 CAZYmes were annotated. M. simiae contains ESX-1 to ESX-5 genes encoding for a type-VII secretion system. Availability of the genome sequence may help depict the unique properties of this environmental, opportunistic pathogen.  相似文献   

19.
Staphylococcus cohnii subsp. cohnii belongs to the family Staphylococcaceae in the order Bacillales, class Bacilli and phylum Firmicutes. The increasing relevance of S. cohnii to human health prompted us to determine the genomic sequence of Staphylococcus cohnii subsp. cohnii strain hu-01, a multidrug-resistant isolate from a hospital in China. Here we describe the features of S. cohnii subsp. cohnii strain hu-01, together with the genome sequence and its annotation. This is the first genome sequence of the species Staphylococcus cohnii.  相似文献   

20.
Nesterenkonia massiliensis sp. nov., strain NP1T, is the type strain of Nesterenkonia massiliensis sp. nov., a new species within the genus Nesterenkonia. This strain, whose genome is described here, was isolated from the feces of a 32-year-old French woman suffering from AIDS and living in Marseille. Nesterenkonia massiliensis is a Gram-positive aerobic coccus. Here, we describe the features of this bacterium, together with the complete genome sequencing and annotation. The 2,726,371 bp long genome (one chromosome but no plasmid) contains 2,663 protein-coding and 51 RNA genes, including 1 rRNA operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号