首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proper regulation of the actin cytoskeleton is essential for cell function and ultimately for survival. Tight control of actin dynamics is required for many cellular processes, including differentiation, proliferation, adhesion, chemotaxis, endocytosis, exocytosis, and multicellular development. Here we describe a putative p21-activated protein kinase, PakD, that regulates the actin cytoskeleton in Dictyostelium discoideum. We found that cells lacking pakD are unable to aggregate and thus unable to develop. Compared to the wild type, cells lacking PakD have decreased membrane extensions, suggesting defective regulation of the actin cytoskeleton. pakD cells show poor chemotaxis toward cyclic AMP (cAMP) but normal chemotaxis toward folate, suggesting that PakD mediates some but not all chemotaxis responses. pakD cells have decreased polarity when placed in a cAMP gradient, indicating that the chemotactic defects of the pakD cells may be due to an impaired cytoskeletal response to cAMP. In addition, while wild-type cells polymerize actin in response to global stimulation by cAMP, pakD cells exhibit F-actin depolymerization under the same conditions. Taken together, the results suggest that PakD is part of a pathway coordinating F-actin organization during development.  相似文献   

2.
Platelets are immunologically competent cells containing cytokines such as TGF-β1 that regulate cell-mediated immunity. However, the mechanisms underlying cytokine secretion from platelets are undefined. The Wiskott-Aldrich syndrome protein (WASp) regulates actin polymerization in nucleated hematopoietic cells but has other role(s) in platelets. WASp-null (WASp−/−) platelets stimulated with a PAR-4 receptor agonist had increased TGF-β1 release compared with WT platelets; inhibiting WASp function with wiskostatin augmented TRAP-induced TGF-β1 release in human platelets. TGF-β1 release is dissociated from α-granule secretion (P-selectin up-regulation) and occurs more gradually, with ∼10–15% released after 30–60 min. Blockade of Src family kinase-mediated WASp Tyr-291/Tyr-293 phosphorylation increased TGF-β1 release, with no additive effect in WASp−/− platelets, signifying that phosphorylation is critical for WASp-limited TGF-β1 secretion. Inhibiting F-actin assembly with cytochalasin D enhanced secretion in WT platelets and further increased TGF-β1 release in WASp−/− platelets, indicating that WASp and actin assembly independently regulate TGF-β1 release. A permeabilized platelet model was used to test the role of upstream small GTPases in TGF-β1 release. N17Cdc42, but not Rac1 mutants, increased TGF-β1 secretion and abrogated WASp phosphorylation. We conclude that WASp function restricts TGF-β1 secretion in a Cdc42- and Src family kinase-dependent manner and independently of actin assembly.  相似文献   

3.
Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4−/− mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4−/− mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.  相似文献   

4.
The actin cytoskeleton within the cell is a network of actin filaments that allows the movement of cells and cellular processes, and that generates tension and helps maintains cellular shape. Although the actin cytoskeleton is a rigid structure, it is a dynamic structure that is constantly remodeling. A number of proteins can bind to the actin cytoskeleton. The binding of a particular protein to F-actin is often desired to support cell biological observations or to further understand dynamic processes due to remodeling of the actin cytoskeleton. The actin co-sedimentation assay is an in vitro assay routinely used to analyze the binding of specific proteins or protein domains with F-actin. The basic principles of the assay involve an incubation of the protein of interest (full length or domain of) with F-actin, ultracentrifugation step to pellet F-actin and analysis of the protein co-sedimenting with F-actin. Actin co-sedimentation assays can be designed accordingly to measure actin binding affinities and in competition assays.Download video file.(136M, mov)  相似文献   

5.
The formation of an immunological synapse (IS) requires tight regulation of actin dynamics by many actin polymerizing/depolymerizing proteins. However, the significance of actin stabilization at the IS remains largely unknown. In this paper, we identify a novel function of TAGLN2—an actin-binding protein predominantly expressed in T cells—in stabilizing cortical F-actin, thereby maintaining F-actin contents at the IS and acquiring LFA-1 (leukocyte function-associated antigen-1) activation after T cell receptor stimulation. TAGLN2 blocks actin depolymerization and competes with cofilin both in vitro and in vivo. Knockout of TAGLN2 (TAGLN2−/−) reduced F-actin content and destabilized F-actin ring formation, resulting in decreased cell adhesion and spreading. TAGLN2−/− T cells displayed weakened cytokine production and cytotoxic effector function. These findings reveal a novel function of TAGLN2 in enhancing T cell responses by controlling actin stability at the IS.  相似文献   

6.
Bax inhibitor 1 (BI-1), a transmembrane protein with Ca2+ channel-like activity, has antiapoptotic and anticancer activities. Cells overexpressing BI-1 demonstrated increased cell adhesion. Using a proteomics tool, we found that BI-1 interacted with γ-actin via leucines 221 and 225 and could control actin polymerization and cell adhesion. Among BI-1−/− cells and cells transfected with BI-1 small interfering RNA (siRNA), levels of actin polymerization and cell adhesion were lower than those among BI-1+/+ cells and cells transfected with nonspecific siRNA. BI-1 acts as a leaky Ca2+ channel, but mutations of the actin binding sites (L221A, L225A, and L221A/L225A) did not change intra-endoplasmic reticulum Ca2+, although deleting the C-terminal motif (EKDKKKEKK) did. However, store-operated Ca2+ entry (SOCE) is activated in cells expressing BI-1 but not in cells expressing actin binding site mutants, even those with the intact C-terminal motif. Consistently, actin polymerization and cell adhesion were inhibited among all the mutant cells. Compared to BI-1+/+ cells, BI-1−/− cells inhibited SOCE, actin polymerization, and cell adhesion. Endogenous BI-1 knockdown cells showed a similar pattern. The C-terminal peptide of BI-1 (LMMLILAMNRKDKKKEKK) polymerized actin even after the deletion of four or six charged C-terminal residues. This indicates that the actin binding site containing L221 to D231 of BI-1 is responsible for actin interaction and that the C-terminal motif has only a supporting role. The intact C-terminal peptide also bundled actin and increased cell adhesion. The results of experiments with whole recombinant BI-1 reconstituted in membranes also coincide well with the results obtained with peptides. In summary, BI-1 increased actin polymerization and cell adhesion through Ca2+ regulation and actin interaction.In metastasis, tumor cells migrate from primary tumor sites into the lymphatic or circulatory system and then attach to the basal matrix of the target tissue (16). Cell adhesion and migration contribute to the metastatic process. Adhesion assembly and turnover are highly dynamic, coordinated processes essential for cell migration (16, 26). Adhesions serve as traction points for cell translocation and mediate a network of signaling events that regulate protrusion, contractility, and attachment (16, 29, 30). In migrating cells, protrusions are generated by actin polymerization at the front of the cell (22). Actin exists as monomers (G-actin) and polymers (F-actin), which transform into each other, and the transformation has a major contribution to cell physiology and dynamics. In the cell under physiological conditions, both G- and F-actin contain Mg2+ at the high-affinity binding site. The actin dynamic state contributes to cancer metastasis environments, including that of increased cell adhesion.The antiapoptotic protein Bax inhibitor 1 (BI-1) was identified through a functional yeast screen designed to select for human cDNAs that inhibit Bax-induced apoptosis (39). BI-1 regulates Ca2+ levels in the endoplasmic reticulum (ER) and cytosol (19) via a C-terminal amino acid sequence of EKDKKKEKK. The antiapoptotic function of BI-1 contributes to the development of cancer and resistance to antitumor therapies (12, 14, 17), but the roles of BI-1 in regulating cell adhesion and actin polymerization are unclear. This study examines the role of BI-1 in cell adhesion through Ca2+ regulation and actin polymerization.  相似文献   

7.
The budding yeast contains two type I myosins, Myo3p and Myo5p, with redundant functions. Deletion of both myosins results in growth defects, loss of actin polarity and polarized cell surface growth, and accumulation of intracellular membranes. Expression of myc-tagged Myo5p in myo3Δ myo5Δ cells fully restores wild-type characteristics. Myo5p is localized as punctate, cortical structures enriched at sites of polarized cell growth. We find that latrunculin-A–induced depolymerization of F-actin results in loss of Myo5p patches. Moreover, incubation of yeast cells at 37°C results in transient depolarization of both Myo5p patches and the actin cytoskeleton. Mutant Myo5 proteins with deletions in nonmotor domains were expressed in myo3Δ myo5Δ cells and the resulting strains were analyzed for Myo5p function. Deletion of the tail homology 2 (TH2) domain, previously implicated in ATP-insensitive actin binding, has no detectable effect on Myo5p function. In contrast, myo3Δ myo5Δ cells expressing mutant Myo5 proteins with deletions of the src homology domain 3 (SH3) or both TH2 and SH3 domains display defects including Myo5p patch depolarization, actin disorganization, and phenotypes associated with actin dysfunction. These findings support a role for the SH3 domain in Myo5p localization and function in budding yeast. The proline-rich protein verprolin (Vrp1p) binds to the SH3 domain of Myo3p or Myo5p in two-hybrid tests, coimmunoprecipitates with Myo5p, and colocalizes with Myo5p. Immunolocalization of the myc-tagged SH3 domain of Myo5p reveals diffuse cytoplasmic staining. Thus, the SH3 domain of Myo5p contributes to but is not sufficient for localization of Myo5p either to patches or to sites of polarized cell growth. Consistent with this, Myo5p patches assemble but do not localize to sites of polarized cell surface growth in a VRP1 deletion mutant. Our studies support a multistep model for Myo5p targeting in yeast. The first step, assembly of Myo5p patches, is dependent upon F-actin, and the second step, polarization of actin patches, requiresVrp1p and the SH3 domain of Myo5p.  相似文献   

8.
We report studies of the fission yeast fimbrin-like protein Fim1, which contains two EF-hand domains and two actin-binding domains (ABD1 and ABD2). Fim1 is a component of both F-actin patches and the F-actin ring, but not of F-actin cables. Fim1 cross-links F-actin in vitro, but a Fim1 protein lacking either EF-hand domains (Fim1A12) or both the EF-hand domains and ABD1 (Fim1A2) has no actin cross-linking activity. Overexpression of Fim1 induced the formation of F-actin patches throughout the cell cortex, whereas the F-actin patches disappear in cells overexpressing Fim1A12 or Fim1A2. Thus, the actin cross-linking activity of Fim1 is probably important for the formation of F-actin patches. The overexpression of Fim1 also excluded the actin-depolymerizing factor Adf1 from the F-actin patches and inhibited the turnover of actin in these structures. Thus, Fim1 may function in stabilizing the F-actin patches. We also isolated the gene encoding Acp1, a subunit of the heterodimeric F-actin capping protein. fim1 acp1 double null cells showed more severe defects in the organization of the actin cytoskeleton than those seen in each single mutant. Thus, Fim1 and Acp1 may function in a similar manner in the organization of the actin cytoskeleton. Finally, genetic studies suggested that Fim1 may function in cytokinesis in cooperation with Cdc15 (PSTPIP) and Rng2 (IQGAP), respectively.  相似文献   

9.
Wiskott-Aldrich Syndrome protein (WASP) is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was−/− mice. We describe here that Was−/− mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was−/− mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was−/− mice. However, adoptive transfer of MOG-activated T cells from Was−/− mice in WT mice failed to induce EAE. Was−/− mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was+/− heterozygous mice developed an intermediate clinical phenotype between WT and Was−/− mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.  相似文献   

10.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.  相似文献   

11.

Background

Dendritic cells (DCs) are highly specialized cells, which capture antigen in peripheral tissues and migrate to lymph nodes, where they dynamically interact with and activate T cells. Both migration and formation of DC-T cell contacts depend on cytoskeleton plasticity. However, the molecular bases governing these events have not been completely defined.

Methodology/Principal Findings

Utilizing a T cell-dependent model of arthritis, we find that PLCγ2−/− mice are protected from local inflammation and bone erosion. PLCγ2 controls actin remodeling in dendritic cells, thereby affecting their capacity to prime T cells. DCs from PLCγ2−/− mice mature normally, however they lack podosomes, typical actin structures of motile cells. Absence of PLCγ2 impacts both DC trafficking to the lymph nodes and migration towards CCL21. The interaction with T cells is also affected by PLCγ2 deficiency. Mechanistically, PLCγ2 is activated by CCL21 and modulates Rac activation. Rac1/2−/− DCs also lack podosomes and do not respond to CCL21. Finally, antigen pulsed PLCγ2−/− DCs fail to promote T cell activation and induce inflammation in vivo when injected into WT mice. Conversely, injection of WT DCs into PLCγ2−/− mice rescues the inflammatory response but not focal osteolysis, confirming the importance of PLCγ2 both in immune and bone systems.

Conclusions/Significance

This study demonstrates a critical role for PLCγ2 in eliciting inflammatory responses by regulating actin dynamics in DCs and positions the PLCγ2 pathway as a common orchestrator of bone and immune cell functions during arthritis.  相似文献   

12.
Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses.  相似文献   

13.
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation– condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The “ragged” and “branched” filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg–F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.  相似文献   

14.
This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.  相似文献   

15.
Osteoclastic bone resorption depends upon the cell''s ability to organize its cytoskeleton. Because vinculin (VCL) is an actin-binding protein, we asked whether it participates in skeletal degradation. Thus, we mated VCLfl/fl mice with those expressing cathepsin K-Cre (CtsK-VCL) to delete the gene in mature osteoclasts or lysozyme M-Cre (LysM-VCL) to target all osteoclast lineage cells. VCL-deficient osteoclasts differentiate normally but, reflecting cytoskeletal disorganization, form small actin rings and fail to effectively resorb bone. In keeping with inhibited resorptive function, CtsK-VCL and LysM-VCL mice exhibit a doubling of bone mass. Despite cytoskeletal disorganization, the capacity of VCL−/− osteoclastic cells to normally phosphorylate c-Src in response to αvβ3 integrin ligand is intact. Thus, integrin-activated signals are unrelated to the means by which VCL organizes the osteoclast cytoskeleton. WT VCL completely rescues actin ring formation and bone resorption, as does VCLP878A, which is incapable of interacting with Arp2/3. As expected, deletion of the VCL tail domain (VCL1–880), which binds actin, does not normalize VCL−/− osteoclasts. The same is true regarding VCLI997A, which also prevents VCL/actin binding, and VCLA50I and VCL811–1066, both of which arrest talin association. Thus, VCL binding talin, but not Arp2/3, is critical for osteoclast function, and its selective inhibition retards physiological bone loss.  相似文献   

16.
17.
Ishihara D  Dovas A  Park H  Isaac BM  Cox D 《PloS one》2012,7(1):e30033
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.  相似文献   

18.
G protein–coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein–coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2 strains, and causes a multiple-tip phenotype in a cAR2+ strain as well as leading to the production of extremely small cells in suspension culture. SCARcells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.  相似文献   

19.
The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.  相似文献   

20.
The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8–11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号