首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, investigators showed that mice with syngeneic murine gliomas that were treated with a neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal cells. Previous studies have shown antitumor effects of other oHSV against a number of adult tumors including hepatocellular carcinoma and renal cell carcinoma. The purpose of the current study was to investigate the oncolytic potential of M002 against difficult to treat pediatric liver and kidney tumors. We showed that the oHSV, M002, infected, replicated, and decreased cell survival in hepatoblastoma, malignant rhabdoid kidney tumor, and renal sarcoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly increased survival and decreased tumor growth. Finally, these studies showed that the primary entry protein for oHSV, CD111 (nectin-1) was present in human hepatoblastoma and malignant rhabdoid kidney tumor specimens. We concluded that M002 effectively targeted these rare aggressive tumor types and that M002 may have potential for use in children with unresponsive or relapsed pediatric solid tumors.  相似文献   

2.
Febrifugine is a kind of quinazolinone compound with high biological activity from a Chinese herb called Chang Shan (Dichroa febrifuga). Febrifugine and its derivatives possess extensive biological activities, some of which exhibited anti-tumor activities as FAK inhibitors. However, they are not very effective at inhibiting tumor metastasis, perhaps because tumors gain energy through compensatory activation of other signaling pathways that promote cell migration and invasion. Therefore, seventeen novel febrifugine derivatives with quinazolinone skeleton were designed, synthesized and acted as potential FAK/PLK1 dual inhibitors. These compounds were determined by 1H-NMR, 13C-NMR and MS. Most of the compounds exhibited good inhibitory activity against cancer cell lines by computer-assisted screening, antitumor activity test and FAK/PLK1 inhibitory activity test, wherein compound 3b was screened as a high-efficiency lead compound.  相似文献   

3.
Proteolysis targeting chimeras (PROTACs) are hetero-bifunctional molecules that could simultaneously bind to the target protein and the E3 ubiquitin ligase, thereby leading to selective degradation of the target protein. Polo-like kinase 1 (PLK1) and bromodomain 4 (BRD4) are both attractive therapeutic targets in acute myeloid leukemia (AML). Here, we developed a small-molecule BRD4 and PLK1 degrader HBL-4 based on PROTAC technology, which leads to fast, efficient, and prolonged degradation of BRD4 and PLK1 in MV4-11 cells tested in vitro and vivo, and potent anti-proliferation and BRD4 and PLK1 degradation ability in human acute leukemia MOLM-13 and KG1 cells. Meanwhile, HBL-4 more effectively suppresses c-Myc levels than inhibitor BI2536, resulting in more effective inducing apoptosis activity in MV4-11 cells. At the same time, HBL-4 induced dramatically improved efficacy in the MV4-11 tumor xenograft model as compared with BI2536. This study is, to our knowledge, the first reports about dual PLK1 and BRD4 degraders, which potentially represents an important therapeutic advance in the treatment of cancer.  相似文献   

4.
The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen 1 (LANA-1) is required for the replication of episomal viral genomes. Regions in its N-terminal and C-terminal domains mediate the interaction with host cell chromatin. Several cellular nuclear proteins, e.g., BRD2/RING3, histones H2A and H2B, MeCP2, DEK, and HP1alpha, have been suggested to mediate this interaction. In this work, we identify the double-bromodomain proteins BRD4 and BRD3/ORFX as additional LANA-1 interaction partners. The carboxy-terminal region of the short variant of BRD4 (BRD4S) containing the highly conserved extraterminal domain directly interacts with an element in the LANA-1 carboxy-terminal domain. We show that ectopically expressed BRD4S and BRD2/RING3 delay progression into the S phase of the cell cycle in epithelial and B-cell lines and increase cyclin E promoter activity. LANA-1 partly releases epithelial and B cells from a BRD4S- and BRD2/RING3-induced G1 cell cycle arrest and also promotes S-phase entry in the presence of BRD4S and BRD2/RING3. This is accompanied by a reduction in BRD4S-mediated cyclin E promoter activity. Our data are in keeping with the notion that the direct interaction of KSHV LANA-1 with BRD4 and other BRD proteins could play a role in the G1/S phase-promoting functions of KSHV LANA-1. Further, our data support a model in which the LANA-1 C terminus contributes to a functional attachment to acetylated histones H3 and H4 via BRD4 and BRD2, in addition to the recently demonstrated direct interaction (A. J. Barbera, J. V. Chodaparambil, B. Kelley-Clarke, V. Joukov, J. C. Walter, K. Luger, and K. M. Kaye, Science 311:856-861, 2006) of the LANA-1 N terminus with histones H2A and H2B.  相似文献   

5.
赖氨酰氧化酶样蛋白4(lysyl oxidase like 4, LOXL4)是一种属于赖氨酰氧化酶(lysyl oxidase, LOX)蛋白质家族的分泌型铜依赖性胺氧化酶,参与细胞外基质(extracellular matrix, ECM)的组装和维持。LOXL4蛋白在人类肝癌、胃癌、乳腺癌、宫颈癌、头颈鳞癌、食管癌和结直肠癌中表达上调,而在人类膀胱癌和肺癌中表达下调并抑制肿瘤的生长,表明LOXL4蛋白在不同类型的人类恶性肿瘤中具有促癌或抑癌的双向作用。肿瘤细胞外泌体中的LOXL4蛋白通过催化作用产生过氧化氢,后者直接激活FAK/Src信号通路,并促进细胞基质粘附和细胞迁移。外泌体介导的LOXL4还可以通过激活PI3K/Akt信号通路来促进肿瘤细胞的增殖和免疫逃逸。肿瘤细胞中的 LOXL4可以经外泌体转运至巨噬细胞,进一步通过STAT1和STAT3介导的信号通路激活细胞免疫抑制功能和激活程序性死亡配体 1(programmed death ligand 1, PD-L1)表达,触发巨噬细胞的免疫抑制功能,促进肿瘤细胞的免疫逃逸。此外,LOXL4蛋白还能通过激活p53蛋白和抑制Ras/ERK信号转导通路发挥抑癌功能。本文主要总结了LOXL4蛋白的结构、功能及其在人类恶性肿瘤发生发展的作用机制,进一步探讨LOXL4蛋白在恶性肿瘤研究中的应用前景,为恶性肿瘤的临床诊断、治疗和筛选预后标志物提供理论基础和参考依据。  相似文献   

6.

Background

The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX).

Materials and Methods

The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models.

Results

The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status.

Conclusions

The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.  相似文献   

7.
Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib''s antitumor effect and relevant to the clinical duration of exposure. This was further underscored by kinetics of dinaciclib-induced downregulation of the antiapoptotic BCL2 family member MCL1 and correlation of sensitivity with the MCL1-to-BCL-xL mRNA ratio or MCL1 amplification in solid tumor models in vitro and in vivo. This MCL1-dependent apoptotic mechanism was additionally supported by synergy with the BCL2, BCL-xL and BCL-w inhibitor navitoclax (ABT-263). These results provide the rationale for investigating MCL1 and BCL-xL as predictive biomarkers for dinaciclib antitumor response and testing combinations with BCL2 family member inhibitors.  相似文献   

8.
9.
Bromodomain-containing protein 4 (BRD4), consisting of two tandem bromodomains (BD1 and BD2), is key epigenetic regulator in fibrosis and cancer, which has been reported that BD1 and BD2 have distinct roles in post-translational modification. But there are few selective inhibitors toward those two domains. Herein, this study designed and synthesized a series of novel selective BRD4-BD1 inhibitors, using computer-aided drug design (CADD) approach focused on exploring the difference of the binding pockets of BD1 and BD2, and finding the His437 a crucial way to achieve BRD4-BD1 selectivity. Our results revealed that the compound 3u is a potent selective BRD4-BD1 inhibitor with IC50 values of 0.56?μM for BD1 but >100?μM for BD2. The compound exhibited a broad spectrum of anti-proliferative activity against several human cancer and fibroblastic cell lines, which might be related to its capability of reducing the expression of c-Myc and collagen I. Furthermore, it could induce apoptosis in A375 cells. To the contrary, the selective BD2 inhibitor, RVX-208, did not indicate any of these activities. Our findings highlight that the function of BRD4-BD1 might be predominant in fibrosis and cancer. And it is rational to further develop novel selective BRD4-BD1 inhibitors.  相似文献   

10.

Background

To determine the maximum tolerated dose (MTD) and dose limiting toxicity (DLT) of irinotecan administered in combination with vincristine, temozolomide and bevacizumab in children with refractory solid tumors.

Methods

The study design included two dose levels (DL) of irinotecan given intravenously once daily for 5 consecutive days (DL1: 30 mg/m2, and DL2: 50 mg/m2), combined with vincristine 1.5 mg/m2 on days 1 and 8, temozolomide 100 mg/m2 on days 1-5, and bevacizumab 15mg/kg on day 1, administered every 21 days for a maximum of 12 cycles.

Results

Thirteen patients were enrolled and 12 were evaluable for toxicity Dose limiting toxicity observed included grade 3 hyperbilirubinemia in 1 of 6 patients on DL1, and grade 3 colitis in 1 of 6 patients on DL2. DL 2 was the determined MTD. A total of 87 cycles were administered. Myelosuppression was mild. Grade 1-2 diarrhea occurred in the majority of cycles with grade 3 diarrhea occurring in only one cycle. Grade 2 hypertension developed in two patients. Severe hemorrhage, intestinal perforation, posterior leukoencephalopathy or growth plate abnormalities were not observed. Objective responses were noted in three Wilms tumor patients and one each of medulloblastoma and hepatocellular carcinoma. Five patients completed all 12 cycles of protocol therapy.

Conclusions

Irinotecan 50 mg/m2/day for 5 days was the MTD when combined with vincristine, temozolomide and bevacizumab administered on a 21 day schedule. Encouraging anti-tumor activity was noted.

Trial Registration

ClinicalTrials.gov; NCT00993044; http://clinicaltrials.gov/show/NCT00993044  相似文献   

11.
Receptor tyrosine kinases (RTKs), in response to their growth factor ligands, phosphorylate and activate downstream signals important for physiological development and pathological transformation. Increased expression, activating mutations and rearrangement fusions of RTKs lead to cancer, inflammation, pain, neurodegenerative diseases, and other disorders. Activation or over-expression of ALK, ROS1, TRK (A, B, and C), and RET are associated with oncogenic phenotypes of their respective tissues, making them attractive therapeutic targets. Cancer cDNA array studies demonstrated over-expression of TRK-A and ROS1 in a variety of cancers, compared to their respective normal tissue controls. We synthesized a library of small molecules that inhibit the above indicated RTKs with picomolar to nanomolar potency. The lead molecule GTx-186 inhibited RTK-dependent cancer cell and tumor growth. In vitro and in vivo growth of TRK-A-dependent IMR-32 neuroblastoma cells and ROS1-overexpressing NIH3T3 cells were inhibited by GTx-186. GTx-186 also inhibited inflammatory signals mediated by NFκB, AP-1, and TRK-A and potently reduced atopic dermatitis and air-pouch inflammation in mice and rats. Moreover, GTx-186 effectively inhibited ALK phosphorylation and ALK-dependent cancer cell growth. Collectively, the RTK inhibitor GTx-186 has a unique kinase profile with potential to treat cancer, inflammation, and neuropathic pain.  相似文献   

12.
13.
The programmed cell death-ligand-1 (PD-L1) and bromodomain protein 4 (BRD4) are frequently overexpressed in cancer and have even been shown to act synergistically. The aim of this study was to determine their potential oncogenic role .in tongue squamous cell carcinoma (TSCC). We detected significantly higher expression levels of both PD-L1 and BRD4 in TSCC tissues compared to normal tissues (P ≤ .05). In addition, the high levels of PD-L1 were significantly associated with increased tumor lymphatic metastasis (P ≤ .05), tumor staging (P ≤ .01), as well as BRD4 expression (P ≤ .05). Genetic and pharmacological inhibition of BRD4 in TSCC cells not only reduced their growth rate but also PD-L1 levels (P ≤ .05), while overexpression of BRD4 upregulated PD-L1. Bioinformatics analysis showed that c-MYC and CDK9 were interactive partners of both BRD4 and PD-L1. While c-MYC clearly modulated the expression of PD-L1, as well as reversed the inhibitory effects of JQ1, no obvious association was observed between CDK9 and PD-L1. We report a novel regulatory axis consisting of BRD4, PD-L1, and c-MYC that likely drives TSCC progression, and is a potential prognostic marker and/or therapeutic target for TSCC.  相似文献   

14.

Background

Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered an unmet medical need.

Methodology and Principal Findings

The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney damage in a rat model of hot ischemia.

Conclusions

Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.  相似文献   

15.
The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds.  相似文献   

16.
Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia.  相似文献   

17.
Recent studies suggest that BET inhibitors are effective anti-cancer therapeutics. Here we show that BET inhibitors are effective against murine primary mammary tumors, but not pulmonary metastases. BRD4, a target of BET inhibitors, encodes two isoforms with opposite effects on tumor progression. To gain insights into why BET inhibition was ineffective against metastases the pro-metastatic short isoform of BRD4 was characterized using mass spectrometry and cellular fractionation. Our data show that the pro-metastatic short isoform interacts with the LINC complex and the metastasis-associated proteins RRP1B and SIPA1 at the inner face of the nuclear membrane. Furthermore, histone binding arrays revealed that the short isoform has a broader acetylated histone binding pattern relative to the long isoform. These differential biochemical and nuclear localization properties revealed in our study provide novel insights into the opposing roles of BRD4 isoforms in metastatic breast cancer progression.  相似文献   

18.
Protein phosphatase inhibitor-1 was purified from bovine adipose tissue. The protein had an apparent molecular mass of 32 kDa by SDS/PAGE and a Stokes' radius of 3.4 nm. It was phosphorylated by cAMP-dependent protein kinase on a threonyl residue; this phosphorylation was necessary for inhibition of protein phosphatase-1. Bovine adipose tissue inhibitor-1 was compared directly with rabbit skeletal muscle inhibitor-1 and with a 32000-Mr, dopamine- and cAMP-regulated phosphoprotein from bovine brain (DARPP-32), also an inhibitor of protein phosphatase-1. By the following biochemical and immunochemical criteria, bovine adipose tissue inhibitor-1 was found to be very similar and possibly identical to DARPP-32 and was clearly distinct from skeletal muscle inhibitor-1: molecular mass by SDS/PAGE; Stokes' radii; phosphorylation on threonine residues; Staphylococcus-aureus-V8-protease-generated peptide patterns analyzed by SDS/PAGE; tryptic phosphopeptide maps analysed by two-dimensional thin-layer electrophoresis/chromatography; elution on reverse-phase HPLC; chymotryptic peptide maps as analysed by reverse-phase HPLC; amino acid composition; antibody recognition by immunoprecipitation and immunoblotting; effect of cyanogen bromide cleavage on protein phosphatase inhibitor activity. Based on these results we conclude that bovine brain and adipose tissue contain an identical phosphoprotein inhibitor of protein phosphatase-1 (DARPP-32), which is distinct from that of skeletal muscle (inhibitor-1).  相似文献   

19.
ObjectivesKeloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids.Materials and MethodsWe evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs.ResultsWe discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro.ConclusionsThese findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.

Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Here, we discovered that PLK4 is a potential target for the treatment of keloids. PLK4 was overexpressed in keloid dermal samples and keloid fibroblasts (KFs) compared with adjacent normal skin samples and normal skin fibroblasts derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by a highly selective inhibitor, centrinone B (Cen‐B), suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase via the p53/p21/Cyclin D1 pathway in vitro. These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号