首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological and pathophysiological stress attenuates global translation via phosphorylation of eIF2α. This in turn leads to the reprogramming of gene expression that is required for adaptive stress response. One class of cellular messenger RNAs whose translation was reported to be insensitive to eIF2α phosphorylation-mediated repression of translation is that harboring an Internal Ribosome Entry Site (IRES). IRES-mediated translation of several apoptosis-regulating genes increases in response to hypoxia, serum deprivation or gamma irradiation and promotes tumor cell survival and chemoresistance. However, the molecular mechanism that allows IRES-mediated translation to continue in an eIF2α-independent manner is not known. Here we have used the X-chromosome linked Inhibitor of Apoptosis, XIAP, IRES to address this question. Using toeprinting assay, western blot analysis and polysomal profiling we show that the XIAP IRES supports cap-independent translation when eIF2α is phosphorylated both in vitro and in vivo. During normal growth condition eIF2α-dependent translation on the IRES is preferred. However, IRES-mediated translation switches to eIF5B-dependent mode when eIF2α is phosphorylated as a consequence of cellular stress.  相似文献   

2.
3.
4.
Mammalian target of rapamycin (mTOR) is a central kinase that regulates cell survival, proliferation and translation. Reactive oxygen species (ROS) are second messengers with potential in manipulating cellular signaling. Here we report that two ROS generating phytochemicals, hydroxychavicol and curcumin synergize in leukemic cells in inducing enhanced apoptosis by independently activating both mitogen activated protein kinase (MAPK) (JNK and P38) and mTOR pathways. Low level transient ROS generated after co-treatment with these phytochemicals led to activation of these two pathways. Both mTOR and MAPK pathways played important roles in co-treatment-induced apoptosis, by knocking down either mTOR or MAPKs inhibited apoptosis. Activation of mTOR, as evident from phosphorylation of its downstream effector eukaryotic translation initiation factor 4E-binding protein 1, led to release of eukaryotic translation initiation factor 4E (eIF4E) which was subsequently phosphorylated by JNK leading to translation of pro-apoptotic proteins Bax and Bad without affecting the expression of anti-apoptotic protein Bcl-xl. Our data suggest that mTOR and MAPK pathways converge at eIF4E in co-treatment-induced enhanced apoptosis and provide mechanistic insight for the role of mTOR activation in apoptosis.  相似文献   

5.
It was previously shown that integrin α6β4 contributes to translation of cancer-related mRNAs such as VEGF via initiation factor eIF4E. In this study, we found that integrin α6β4 regulates the activity of eIF4E through the Ser/Thr kinase Mnk. Although a role for Mnk in various aspects of cancer progression has been established, a link between integrin and Mnk activity has not. Here we show that Mnk1 is a downstream effector of integrin α6β4 and mediates the α6β4 signaling, important for translational control. Integrin α6β4 signals through MEK and p38 MAPK to increase phosphorylation of Mnk1 and eIF4E. Inhibition of Mnk1 activity by CGP57380 or downregulation by shRNA blocks α6β4-dependent translation of VEGF mRNA. Our studies suggest that Mnk1 could be a therapeutic target in cancers where the integrin α6β4 level is high.  相似文献   

6.
The non-classical HLA class I antigen HLA-G contributes to immune escape mechanisms in glioblastoma multiforme (GBM). We have previously shown that IL-1β–HIF-1α axis connects inflammatory and oncogenic pathways in GBM. In this study, we investigated the role of IL-1β induced inflammation in regulating HLA-G expression. IL-1β increased HLA-G and Toll like receptor 4 (TLR4) expression in a HIF-1α dependent manner. Inhibition of TLR4 signaling abrogated IL-1β induced HLA-G. IL-1β increased HMGB1 expression and its interaction with TLR4. Inhibition of HMGB1 inhibited TLR4 and vice versa suggesting the existence of HMGB1–TLR4 axis in glioma cells. Interestingly, HMGB1 inhibition prevented IL-1β induced HLA-G expression. Elevated levels of HMGB1 and β-defensin 3 were observed in GBM tumors. Importantly, β-defensin-3 prevented IL-1β induced HLA-G, TLR4, HMGB1 expression and release of pro-inflammatory mediators. Our studies indicate that β-defensin-3 abrogates IL-1β induced HLA-G expression by negatively affecting key molecules associated with its regulation.  相似文献   

7.
Enhanced proliferation of pulmonary arterial vascular smooth muscle cells (PASMCs) is a key pathological component of vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Mammalian targeting of rapamycin (mTOR) signaling has been shown to play a role in protein translation and participate in the progression of pulmonary hypertension. Eukaryotic translation initiation factor-2α (eIF2α) is a key factor in regulation of cell growth and cell cycle, but its role in mTOR signaling and PASMCs proliferation remains unknown. Pulmonary hypertension (PH) rat model was established by hypoxia. Rapamycin was used to treat rats as an mTOR inhibitor. Proliferation of primarily cultured rat PASMCs was induced by hypoxia, rapamycin and siRNA of mTOR and eIF2α were used in loss-of-function studies. The expression and activation of eIF2α, mTOR and c-myc were analyzed. Results showed that mTOR/eIF2α signaling was significantly activated in pulmonary arteries from hypoxia exposed rats and PASMCs cultured under hypoxia condition. Treatment with mTOR inhibitor for 21 days attenuated vascular remodeling, suppressed mTOR and eIF2α activation, inhibited c-myc expression in HPH rats. In hypoxia-induced PASMCs, rapamycin and knockdown of mTOR and eIF2α by siRNA significantly abolished proliferation and increased c-myc expression. These results suggest a critical role of the mTOR/eIF2αpathway in hypoxic vascular remodeling and PASMCs proliferation of HPH.  相似文献   

8.
Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E can interact either with the scaffold protein eIF4G or with repressor proteins termed eIF4E-binding proteins (4E-BPs). High levels of expression can disrupt cellular growth control and are associated with human cancers. A fraction of the cellular eIF4E is found in the nucleus where it may play a role in the transport of certain mRNAs to the cytoplasm. eIF4E undergoes regulated phosphorylation (at Ser209) by members of the Mnk group of kinases, which are activated by multiple MAP kinases (hence Mnk = MAP-kinase signal integrating kinase). The functional significance of its phosphorylation has been the subject of considerable interest. Recent genetic studies in Drosophila point to a key role for phosphorylation of eIF4E in growth and viability. Initial structural data suggested that phosphorylation of Ser209 might allow formation of a salt bridge with a basic residue (Lys159) that would clamp eIF4E onto the mRNA and increase its affinity for ligand. However, more recent structural data place Ser209 too far away from Lys159 to form such an interaction, and biophysical studies indicate that phosphorylation actually decreases the affinity of eIF4E for cap or capped RNA. The implications of these studies are discussed in the light of other, in vitro and in vivo, investigations designed to address the role of eIF4E phosphorylation in mRNA translation or its control.  相似文献   

9.
The kisspeptin (Kp, Kp-54, metastin)/KISS1R system plays crucial roles in regulating the secretion of gonadotropin-releasing hormone. Continuous administration of nonapeptide Kp analogs caused plasma testosterone depletion, whereas bolus administration caused strong plasma testosterone elevation in male rats. To develop a new class of small peptide drugs, we focused on stepwise N-terminal truncation of Kp analogs and discovered potent pentapeptide analogs. Benzoyl-Phe-azaGly-Leu-Arg(Me)-Trp-NH2 (16) exhibited high agonist activity for KISS1R and excellent metabolic stability in rat serum. A single injection of a 4-pyridyl analog (19) at the N-terminus of 16 into male Sprague Dawley rats caused a robust increase in plasma luteinizing hormone levels, but unlike continuous administration of nonapeptide Kp analogs, continuous administration of 19 maintained moderate testosterone levels in rats. These results indicated that small peptide drugs can be successfully developed for treating sex hormone deficiency.  相似文献   

10.
11.
4-Hydroxyphenylpyruvate dioxygenase (HPPD), converting 4-hydroxyphenylpyruvate acid to homogentisate, is an important target for treating type I tyrosinemia and alkaptonuria due to its significant role in tyrosine catabolism. However, only one commercial drug, NTBC, also known as nitisinone, has been available for clinical use so far. Herein, we have elucidated the structure-based design of a series of pyrazolone–quinazolone hybrids that are novel potent human HPPD inhibitors through the successful integration of various techniques including computational simulations, organic synthesis, and biochemical characterization. Most of the new compounds displayed potent inhibitory activity against the recombinant human HPPD in nanomolar range. Compounds 3h and 3u were identified as the most potent candidates with Ki values of around 10 nM against human HPPD, about three-fold more potent than NTBC. Molecular modeling indicated that the interaction between the pyrazolone ring and ferrous ion, and the hydrophobic interaction of quinazolone with its surrounding residues, such as Phe347 and Phe364, contributed greatly to the high potency of these inhibitors. Therefore, compounds 3h and 3u could be potentially useful for the treatment of type I tyrosinemia and other diseases with defects in tyrosine degradation.  相似文献   

12.
One important function of melanocytes (MCs) is to produce and transfer melanin to neighbouring keratinocytes (KCs) to protect epithelial cells from UV radiation. The mechanisms regulating the specific migration and localisation of the MC lineage remain unknown. We have found three heterozygous mutations that cause amino acid substitutions in the SASH1 gene in individuals with a kind of dyschromatosis. In epidermal tissues from an affected individual, we observed the increased transepithelial migration of melanocytes. Functional analyses indicate that these SASH1 mutations not only cause the increased migration of A375 cells and but also induce intensive bindings with two novel cell adhesion partners IQGAP1 and Gαs. Further, SASH1 mutations induce uniform loss of E-Cadherin in human A375 cells. Our findings suggest a new scaffold protein SASH1 to regulate IQGAP1–E-Cadherin signalling and demonstrate a novel crosstalking between GPCR signalling, calmodulin signalling for the modulation of MCs invasion.  相似文献   

13.
eIF4G is the scaffold subunit of the eIF4F complex, whose binding domains for eIF4E and poly(A)-binding protein (PABP) are thought to enhance formation of activated eIF4F•mRNA•PABP complexes competent to recruit 43S pre-initiation complexes. We found that the RNA-binding region (RNA1) in the N-terminal domain (NTD) of yeast eIF4G1 can functionally substitute for the PABP-binding segment to rescue the function of an eIF4G1-459 mutant impaired for eIF4E binding. Assaying RNA-dependent PABP–eIF4G association in cell extracts suggests that RNA1, the PABP-binding domain, and two conserved elements (Box1 and Box2) between these segments have overlapping functions in forming native eIF4G•mRNA•PABP complexes. In vitro experiments confirm the role of RNA1 in stabilizing eIF4G–mRNA association, and further indicate that RNA1 and Box1 promote PABP binding, in addition to RNA binding, by the eIF4G1 NTD. Our findings indicate that PABP–eIF4G association is only one of several interactions that stabilize eIF4F•mRNA complexes, and emphasize that closed-loop mRNP formation via PABP–eIF4G interaction is non-essential in vivo. Interestingly, two other RNA-binding regions in eIF4G1 have critical functions downstream of eIF4F•mRNA assembly.  相似文献   

14.
The 3′-untranslated regions of many plant viral RNAs contain cap-independent translation elements (CITEs) that drive translation initiation at the 5′-end of the mRNA. The barley yellow dwarf virus-like CITE (BTE) stimulates translation by binding the eIF4G subunit of translation initiation factor eIF4F with high affinity. To understand this interaction, we characterized the dynamic structural properties of the BTE, mapped the eIF4G-binding sites on the BTE and identified a region of eIF4G that is crucial for BTE binding. BTE folding involves cooperative uptake of magnesium ions and is driven primarily by charge neutralization. Footprinting experiments revealed that functional eIF4G fragments protect the highly conserved stem–loop I and a downstream bulge. The BTE forms a functional structure in the absence of protein, and the loop that base pairs the 5′-untranslated region (5′-UTR) remains solvent-accessible at high eIF4G concentrations. The region in eIF4G between the eIF4E-binding site and the MIF4G region is required for BTE binding and translation. The data support the model in which the eIF4F complex binds directly to the BTE which base pairs simultaneously to the 5′-UTR, allowing eIF4F to recruit the 40S ribosomal subunit to the 5′-end.  相似文献   

15.
《Cellular signalling》2014,26(7):1500-1505
Endogenous reactive oxygen species (ROS) control is important for the maintenance of self-renewal of embryonic stem (ES) cells. Although miRNAs have been found to be critically involved in the regulation of the self-renewal, whether miRNAs can regulate the signaling axis to control ROS in ES cells is unclear. Here we show that miR-29b specifically regulates the self-renewal of mouse ES cells in response to ROS generated by antioxidant-free culture. Sirt1 is the direct target of miR-29b and can also make mES cells sensitive to ROS and regulate the self-renewal of mES cells during the response of ROS. We further found that Sirt1 could attenuate the miR-29b function in regulating mES cells' self-renewal in response to ROS. Our results determined that miR-29b–Sirt1 axis regulates self-renewal of mES cells in response to ROS.  相似文献   

16.
Oxidative folding in the endoplasmic reticulum (ER) involves ER oxidoreductin 1 (Ero1)-mediated disulfide formation in protein disulfide isomerase (PDI). In this process, Ero1 consumes oxygen (O2) and releases hydrogen peroxide (H2O2), but none of the published Ero1 crystal structures reveal any potential pathway for entry and exit of these reactants. We report that additional mutation of the Cys208–Cys241 disulfide in hyperactive Ero1α (Ero1α-C104A/C131A) potentiates H2O2 production, ER oxidation, and cell toxicity. This disulfide clamps two helices that seal the flavin cofactor where O2 is reduced to H2O2. Through its carboxyterminal active site, PDI unlocks this seal by forming a Cys208/Cys241-dependent mixed-disulfide complex with Ero1α. The H2O2-detoxifying glutathione peroxidase 8 also binds to the Cys208/Cys241 loop region. Supported by O2 diffusion simulations, these data describe the first enzymatically controlled O2 access into a flavoprotein active site, provide molecular-level understanding of Ero1α regulation and H2O2 production/detoxification, and establish the deleterious consequences of constitutive Ero1 activity.  相似文献   

17.
18.
GADD34 is a member of a growth arrest and DNA damage (GADD)-inducible gene family. Here, we established a novel Chinese hamster ovary (CHO)-K1-derived cell line, CHO-K1-G34M, which carries a nonsense mutation (termed the Q525X mutation) in the GADD34 gene. The Q525X mutant protein lacks the C-terminal 66 amino acids required for GADD34 to bind to and activate protein phosphatase 1 (PP1). We investigated the effects of GADD34 with or without the Q525X mutation on the phosphorylation status of PP1 target proteins, including the α subunit of eukaryotic initiation factor 2 (eIF2α) and glycogen synthase kinase 3β (GSK3β). CHO-K1-G34M cells had higher levels of eIF2α phosphorylation compared to the control CHO-K1-normal cells both in the presence and absence of endoplasmic reticulum stress. Overexpression of the wild-type GADD34 protein in CHO-K1-normal cells largely reduced eIF2α phosphorylation, while overexpression of the Q525X mutant did not produce similar reductions. Meanwhile, neither wild type nor Q525X mutation of GADD34 affected the GSK3β phosphorylation status. GADD34 also did not affect the canonical Wnt signaling pathway downstream of GSK3β. Cell proliferation rates were higher, while expression levels of the cyclin-dependent kinase inhibitor p21 were lower in CHO-K1-G34M cells compared to the CHO-K1-normal cells. The GADD34 Q525X mutant had a reduced ability to inhibit cell proliferation and enhance p21 expression of the CHO-K1-normal cells compared to the wild-type GADD34 protein. These results suggest that the GADD34 protein C-terminal plays important roles in regulating not only eIF2α dephosphorylation but also cell proliferation in CHO-K1 cells.  相似文献   

19.
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production.  相似文献   

20.
The protein deacetylase SIRT1 has been implicated in a variety of cellular functions, including development, cellular stress responses, and metabolism. Increasing evidence suggests that similar to its counterpart, Sir2, in yeast, Caenorhabditis elegans, and Drosophila melanogaster, SIRT1 may function to regulate life span in mammals. However, SIRT1''s role in cancer is unclear. During our investigation of SIRT1, we found that c-Myc binds to the SIRT1 promoter and induces SIRT1 expression. However, SIRT1 interacts with and deacetylates c-Myc, resulting in decreased c-Myc stability. As a consequence, c-Myc''s transformational capability is compromised in the presence of SIRT1. Overall, our experiments identify a c-Myc–SIRT1 feedback loop in the regulation of c-Myc activity and cellular transformation, supporting/suggesting a role of SIRT1 in tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号