首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin is a ubiquitous intracellular calcium binding protein which has been shown to be associated with cell cycling. Previous studies using animal tumor models have suggested a positive correlation between tumor calmodulin content and rate of tumor growth. We studied the role of calmodulin in renal cell carcinoma (RCC) cell lines and compared this with short term normal fetal kidney cell lines. The effects of calmodulin inhibition was determined using the calmodulin inhibitor W13 (Naphthalene-sulfonamide) and its less active partner W12. Cell size, calmodulin content and inhibition studies using W13 did not reveal any simple correlations for the RCC cell lines, although the RCC lines did have a higher content than the fetal kidney cell lines. Calmodulin content determination of RCC and normal adult kidney tissue failed to show any difference. We conclude that, contrary to previous reports using animal models, there is no simple relationship between tumor growth rates and calmodulin content for human RCC.  相似文献   

2.
Before a lead compound goes through a clinical trial, preclinical studies utilize two-dimensional (2D) in vitro models and animal models to study the pharmacodynamics and pharmacokinetics of that lead compound. However, these current preclinical studies may not accurately represent the efficacy and safety of a lead compound in humans, as there has been a high failure rate of drugs that enter clinical trials. All of these failures and the associated costs demonstrate a need for more representative models of human organ systems for screening in the preclinical phase of drug development. In this study, we review the recent advances in in vitro modeling including three-dimensional (3D) organoids, 3D microfabrication, and 3D bioprinting for various organs including the heart, kidney, lung, gastrointestinal tract (intestine–gut–stomach), liver, placenta, adipose, retina, bone, and brain as well as multiorgan models. The availability of organ-on-chip models provides a wealth of opportunities to understand the pathogenesis of human diseases and provide a potentially better model to screen a drug, as these models utilize a dynamic 3D environment similar to the human body. Although there are limitations of organ-on-chip models, the emergence of new technologies have refined their capability for translational research as well as precision medicine.  相似文献   

3.
Anticancer drug discovery and development using conventional cell line and animal models has traditionally had a low overall success rate. Despite yielding game-changing new therapeutics, 10–20 new molecules have to be brought to the clinic to obtain one new approval, making this approach costly and inefficient. The use of in vitro experimental models based on primary human tumour tissues has the potential to provide a representation of human cancer biology that is closer to an actual patient and to ‘bridge the translational gap’ between preclinical and clinical research. Here, we review recent advances in the use of human tumour samples for preclinical research through organoid development or as primary patient materials. While challenges still remain regarding analysis, validation and scalability, evidence is mounting for the applicability of both models as preclinical research tools.  相似文献   

4.
The occurrence of metastasis is a serious risk for renal cell carcinoma (RCC) patients. In order to develop novel therapeutic approaches to control the progression of metastatic RCC, it is of urgent need to understand the molecular mechanisms underlying RCC metastasis and identify prognostic markers of metastatic risk. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been known to be closely associated with extracellular matrix (ECM) turnover, which plays a highly active role in tumor metastasis. Recent studies have shown that immunophilin FK-506-binding protein 51 (FKBP51) may be important for the regulation of ECM function, and exert effects on the invasion and migration of tumor cells. However, the mechanisms underlying these activities remain unclear. The present study detected the role of FKBP51 in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC, and found that FKBP51 significantly promotes ccRCC invasion and migration by binding with the TIMP3, connecting TIMP3 with Beclin1 complex and increasing autophagic degradation of TIMP3. Given the important roles that TIMPs/MMPs play in ECM regulation and remodeling, our findings will provide new perspective for future investigation of the regulation of metastasis of kidney cancer and other types of cancer.Subject terms: Renal cell carcinoma, Extracellular matrix  相似文献   

5.
The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.

In February of 2020, the World Health Organization (WHO) R&D Blueprint convened a group of experts to develop preclinical models of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Since its inception, the goal of this WHO COVID Modeling group (WHO-COM) has been to accelerate the development of Coronavirus Disease 2019 (COVID-19) vaccines and therapeutics by rapidly sharing data among member scientists worldwide. In addition, concerns were raised at that time about the possibility of vaccine-associated enhanced respiratory disease (VAERD) or antibody-dependent enhancement (ADE) after vaccination or infection. In September of 2020, the WHO-COM published a review on COVID-19 animal models [1], which reflected the state-of-the art at that time, with the vast majority of publications authored by members of the group.Preclinical studies in nonhuman primates (NHPs) of COVID-19 vaccines that are currently being deployed [25] proved remarkably predictive of the outcome of clinical efficacy studies. In particular, NHP studies not only predicted high clinical efficacy of these vaccines but also suggested immune correlates of protection. Moreover, preclinical studies accurately predicted that protection against severe pneumonia would be easier to achieve than protection against viral replication in nasal mucosa. These observations confirm the value and importance of the use of animal models for COVID-19.In 2021, with several vaccines rolling out worldwide and the detection of variants of concern (VOCs), the development of preclinical models of SARS-CoV-2 infection and their role in COVID-19 research has entered into a new phase. This paper provides an update from the WHO-COM regarding advances in preclinical models. In particular, we discuss how animal model research has provided insight into VOC pathogenesis and correlates of protection and has helped therapeutic development. Finally, we discuss the current status of VAERD research and the race to develop models that recapitulate COVID-19 demographic variables such as comorbidities and age.  相似文献   

6.
7.
Disappointing results from most late-stage clinical trials of cancer therapeutics indicate a need for improved and more-predictive animal tumor models. This insufficiency of models, combined with the advent of a class of drugs that target the tumor microenvironment rather than the tumor cell, presents new challenges for designing and interpreting preclinical efficacy studies. A comparison of the clinical efficacy of anti-angiogenic drugs with their corresponding preclinical studies over the past two decades offers many lessons that can inform and improve the design of experiments in existing mouse models. In addition, technological and logistical advances in mouse models of human cancer over the past five years have the potential to increase the clinical translatability of animal studies.  相似文献   

8.
Acute kidney injury is a serious health hazard disease due to its complex etiology and lack of effective treatments, resulting in high medical costs and high mortality. At present, a large number of basic research studies on acute kidney injury have been carried out. However, acute kidney injury models established in rodents sometimes do not simulate the course of human disease well. Research in large animal models of acute kidney injury is relatively rare, and methods to build a mature model of acute kidney injury have failed. Because its kidney anatomy and morphology are very similar to those in humans, the mini pig is an ideal animal in which to model kidney disease. Nephrotoxic drug-induced acute kidney injury has a high incidence. In this study, we established models of acute kidney injury induced by two drugs (gentamicin and cisplatin). Finally, the model of cisplatin-induced acute kidney injury was developed successfully, but we found the model of gentamycin-induced acute kidney injury was not reproducible. Compared to other models, these models better represent acute kidney injury caused by antibiotics and chemotherapeutic drugs and provide a basis for the study of new treatments for acute kidney injury in a large animal model.  相似文献   

9.
Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour‐promoting effects of circCSNK1G3 were, at least partly, achieved by up‐regulating miR‐181b. Increased miR‐181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR‐181b expression, which leads to TIMP3‐mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.  相似文献   

10.
Klein RD 《Mutation research》2005,576(1-2):111-119
The ability to modify the expression of specific genes in the mouse through genetic engineering technologies allows for the generation of previously unavailable models for prostate cancer prevention research. Although animal models have existed for some time for the study of prostate cancer prevention (primarily in the rat), it is uncertain if the mechanisms that drive prostate carcinogenesis in these models are relevant to those in human prostate cancer. Cell culture studies are of limited usefulness because the conditions are inherently artificial. Factors such as relevant physiologic concentrations and metabolism of putative chemoprevention compounds are difficult to model in an in vitro system. These studies also preclude the types of interactions known to occur between multiple cell types in vivo. In addition, all prostate cancer cell lines are already highly progressed and are not representative of the type of cells to which most preventive strategies would be targeted. Due to the advent of genetically engineered mouse (GEM) models, we now have models of prostate cancer that are dependent on molecular mechanisms already implicated in human prostate carcinogenesis. With these models we can perform a variety of experiments that could previously only be done in cell culture or in prostate cancer cell line xenografts. The currently available GEM models of prostate cancer have been extensively reviewed therefore, this review will focus on the types of models available and their usefulness for various types of preclinical studies relevant to prostate cancer prevention.  相似文献   

11.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.  相似文献   

12.
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.  相似文献   

13.
Primary brain tumors are a heterogeneous group of malignancies that originate in cells of the central nervous system. A variety of models tractable for preclinical studies have been developed to recapitulate human brain tumors, allowing us to understand the underlying pathobiology and explore potential treatments. However, many promising therapeutic strategies identified using preclinical models have shown limited efficacy or failed at the clinical trial stage. The inability to develop therapeutic strategies that significantly improve survival rates in patients highlight the compelling need to revisit the design of currently available animal models and explore the use of new models that allow us to bridge the gap between promising preclinical findings and clinical translation. In this review, we discuss current strategies used to model glioblastoma, the most malignant brain tumor in adults and highlight the shortcomings of specific models that must be circumvented for the development of innovative therapeutic strategies.  相似文献   

14.
The increasing demand for reliable preclinical models and to reduce, refine and, if possible, replace animal studies have brought forth the development of complex tissue cultures in different research areas, including the musculoskeletal field. In this paper, we review the literature within last 10 years on the state of progress for in vitro models of osteochondral tissue cultures, taking into account the clinical relevance of the management and treatment of osteochondral lesions. According to the selected research criteria, 35 works, 27 of which with animal tissues and 8 with human tissues, resulted to be relevant for the purposes of this review. Data analyzed revealed a great heterogeneity among the proposed tissue culture models. The anatomical harvesting sites resulted to be mainly the knee stifle joint, both for animal (prevalently bovines) and human tissues derived from joint replacement surgery, and significant heterogeneity among culture conditions and media were found. To date, very few papers have focused on the set up of a reproducible in vitro model, applicable to a variety of studies, thus suggesting a relevant gap to fill in the development of advanced three-dimensional osteochondral culture models.  相似文献   

15.
Renal cell carcinoma (RCC) metastasis portends a poor prognosis and cannot be reliably predicted. Early determination of the metastatic potential of RCC may help guide proper treatment. We analyzed microRNA (miRNA) expression in clear cell RCC (ccRCC) for the purpose of developing a miRNA expression signature to determine the risk of metastasis and prognosis. We used the microarray technology to profile miRNA expression of 78 benign kidney and ccRCC samples. Using 28 localized and metastatic ccRCC specimens as the training cohort and the univariate logistic regression and risk score methods, we developed a miRNA signature model in which the expression levels of miR-10b, miR-139-5p, miR-130b and miR-199b-5p were used to determine the status of ccRCC metastasis. We validated the signature in an independent 40-sample testing cohort of different stages of primary ccRCCs using the microarray data. Within the testing cohort patients who had at least 5 years follow-up if no metastasis developed, the signature showed a high sensitivity and specificity. The risk status was proven to be associated with the cancer-specific survival. Using the most stably expressed miRNA among benign and tumorous kidney tissue as the internal reference for normalization, we successfully converted his signature to be a quantitative PCR (qPCR)-based assay, which showed the same high sensitivity and specificity. The 4-miRNA is associated with ccRCC metastasis and prognosis. The signature is ready for and will benefit from further large clinical cohort validation and has the potential for clinical application.  相似文献   

16.
Congenital and perinatal infections with cytomegalovirus (CMV) are responsible for considerable short- and long- term morbidity in infants. CMV is the most common congenital viral infection in the developed world, and is a common cause of neurodevelopmental injury, including mental retardation and sensorineural hearing loss (SNHL). Antiviral therapy has been shown to be valuable in ameliorating the severity of SNHL, but CMV disease control in newborns ultimately depends on successful development of a vaccine. Because CMVs are extremely species specific, preclinical evaluation of vaccines must be performed in animal models using the appropriate CMV of the animal being studied. Several small animal models available for CMV vaccine and pathogenesis research are described. The discussion focuses on the guinea pig model because guinea pig cytomegalovirus (GPCMV), which crosses the placenta and causes infection in utero, is uniquely useful. Examination of vaccines in the GPCMV and other nonprimate models should provide insights into the determinants of the host response that protect the fetus, and may help to prioritize potential vaccine strategies for use in human clinical trials related to this important public health problem.  相似文献   

17.
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.  相似文献   

18.
Renal cell carcinoma (RCC) is the most common adult renal epithelial cancer susceptible to metastasis and patients with irresectable RCC always have a poor prognosis. Long noncoding RNAs (lncRNAs) have recently been documented as having critical roles in the etiology of RCC. Nevertheless, the prognostic significance of lncRNA-based signature for outcome prediction in patients with RCC has not been well investigated. Therefore, it is essential to identify a lncRNA-based signature for predicting RCC prognosis. In the current study, we comprehensively analyzed the RNA sequencing data of the three main pathological subtypes of RCC (kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell carcinoma [KIRP], and kidney chromophobe carcinoma [KICH]) from The Cancer Genome Atlas (TCGA) database, and identified a 6-lncRNA prognostic signature with the help of a step-wise multivariate Cox regression model. The 6-lncRNA signature stratified the patients into low- and high-risk groups with significantly different prognosis. Multivariate Cox regression analysis showed that predictive value of the 6-lncRNA signature was independent of other clinical or pathological factors in the entire cohort and in each cohort of RCC subtypes. In addition, the three independent prognostic clinical factors (including age, pathologic stage III, and stage IV) was also stratified into low- and high-risk groups basis on the risk score, and the stratification analyses demonstrated that the high-risk score was a poor prognostic factor. In conclusion, these findings indicate that the 6-lncRNA signature is a novel prognostic biomarker for all three subtypes of RCC, and can increase the accuracy of predicting overall survival.  相似文献   

19.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.KEY WORDS: Duchenne muscular dystrophy, Dystrophin, Animal model, Canine DMD, Gene therapy  相似文献   

20.
In this review we have attempted to summarize some of the recent developments in using novel technologies to unravel the molecular mechanisms of tumor progression, in particular the formation of tumor metastasis. In order to push forward the frontiers in cancer research, it is obvious that several fields have to be further developed and interconnected: (1) clinical, epidemiological and pathological studies which mainly use innovative technologies, including microarray technology and nanotechnology to determine as many parameters as possible, (2) the development of improved and suitable bioassays and better animal models and (3) the use of novel computation and bioinformatics methods to sample and integrate the exponentially growing sets of data coming from such investigations. Fashionable as scientists are, this new endeavor may be called systems biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号