首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanogens are a diverse group of archaea that play a critical role in the global carbon cycle. The lack of appropriate molecular tools to simultaneously quantify numerous methanogenic taxa, however, has largely limited our ability to study these communities in a wide variety of habitats, such as anaerobic digesters (ADs). In this study, 34 probe-based quantitative PCR (qPCR) assays were designed to target all known methanogenic genera within the archaeal phylum Euryarchaeota. These qPCR assays were adapted to a high-throughput microfluidic platform, which allowed for the simultaneous detection and absolute quantification of numerous taxa in a single run. The resulting microfluidic qPCR (MFQPCR) platform was successfully used to decipher structure–function relationships among methanogenic communities in four laboratory-scale digesters exposed to a transient organic overload. Twelve of the 34 genera targeted in the MFQPCR were detected in the ADs, similar to results obtained using high-throughput sequencing. The MFQPCR platform and conventional qPCR assays also generated similar quantitative results. The MFQPCR tool developed here will help optimize AD technologies for efficient waste treatment and enhanced biogas production and can facilitate studies that will increase our understanding of methanogenic communities in other environments.  相似文献   

2.
Various enteric viruses including norovirus, rotavirus, adenovirus, and astrovirus are the major etiological agents of food-borne and water-borne disease outbreaks and frequently cause non-bacterial gastroenteritis worldwide. Sensitive and high-throughput detection methods for these viral pathogens are compulsory for diagnosing viral pathogens and subsequently improving public health. Hence, we developed a sensitive, specific, and high-throughput analytical assay to detect most major enteric viral pathogens using “Combimatrix” platform oligonucleotide probes. In order to detect four different enteric viral pathogens in a sensitive and simultaneous manner, we first developed a multiplex RT-PCR assay targeting partial gene sequences of these viruses with fluorescent labeling for the subsequent microarray. Then, five olignonucleotides specific to each of the four major enteric viruses were selected for the microarray from the oligonulceotide pools targeting the specific genes obtained by multiplex PCR of these viruses. The oligonucleotide microarray was evaluated against stool specimens containing single or mixed viral species. As a result, we demonstrated that the multiplex RT-PCR assay specifically amplified partial sequences of four enteric viruses and the subsequent microarray assay was capable of sensitive and simultaneous detection of those viruses. The developed method could be useful for diagnosing enteric viruses in both clinical and environmental specimens.  相似文献   

3.
Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment.  相似文献   

4.
Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log(10) GC reductions and a 2.3- and 2.4-log(10) PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log(10) GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log(10) GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration.  相似文献   

5.
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission.  相似文献   

6.
Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health.  相似文献   

7.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% +/- 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

8.
Silver nanoparticles (AgNPs) are considered to be a potentially useful tool for controlling various pathogens. However, there are concerns about the release of AgNPs into environmental media, as they may generate adverse human health and ecological effects. In this study, we developed and evaluated a novel micrometer-sized magnetic hybrid colloid (MHC) decorated with variously sized AgNPs (AgNP-MHCs). After being applied for disinfection, these particles can be easily recovered from environmental media using their magnetic properties and remain effective for inactivating viral pathogens. We evaluated the efficacy of AgNP-MHCs for inactivating bacteriophage ϕX174, murine norovirus (MNV), and adenovirus serotype 2 (AdV2). These target viruses were exposed to AgNP-MHCs for 1, 3, and 6 h at 25°C and then analyzed by plaque assay and real-time TaqMan PCR. The AgNP-MHCs were exposed to a wide range of pH levels and to tap and surface water to assess their antiviral effects under different environmental conditions. Among the three types of AgNP-MHCs tested, Ag30-MHCs displayed the highest efficacy for inactivating the viruses. The ϕX174 and MNV were reduced by more than 2 log10 after exposure to 4.6 × 109 Ag30-MHCs/ml for 1 h. These results indicated that the AgNP-MHCs could be used to inactivate viral pathogens with minimum chance of potential release into environment.  相似文献   

9.
10.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% ± 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

11.
Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.  相似文献   

12.
13.
14.
Microbial contamination of the environment represents a significant health risk. Classical bacterial fecal indicators have shown to have significant limitations, viruses are more resistant to many inactivation processes and standard fecal indicators do not inform on the source of contamination. The development of cost-effective methods for the concentration of viruses from water and molecular assays facilitates the applicability of viruses as indicators of fecal contamination and as microbial source tracking (MST) tools. Adenoviruses and polyomaviruses are DNA viruses infecting specific vertebrate species including humans and are persistently excreted in feces and/or urine in all geographical areas studied. In previous studies, we suggested the quantification of human adenoviruses (HAdV) and JC polyomaviruses (JCPyV) by quantitative PCR (qPCR) as an index of human fecal contamination. Recently, we have developed qPCR assays for the specific quantification of porcine adenoviruses (PAdV) and bovine polyomaviruses (BPyV) as animal fecal markers of contamination with sensitivities of 1-10 genome copies per test tube. In this study, we present the procedure to be followed to identify the source of contamination in water samples using these tools. As example of representative results, analysis of viruses in ground water presenting high levels of nitrates is shown.Detection of viruses in low or moderately polluted waters requires the concentration of the viruses from at least several liters of water into a much smaller volume, a procedure that usually includes two concentration steps in series. This somewhat cumbersome procedure and the variability observed in viral recoveries significantly hamper the simultaneous processing of a large number of water samples.In order to eliminate the bottleneck caused by the two-step procedures we have applied a one-step protocol developed in previous studies and applicable to a diversity of water matrices. The procedure includes: acidification of ten-liter water samples, flocculation by skimmed milk, gravity sedimentation of the flocculated materials, collection of the precipitate and centrifugation, resuspension of the precipitate in 10 ml phosphate buffer. The viral concentrate is used for the extraction of viral nucleic acids and the specific adenoviruses and polyomaviruses of interest are quantified by qPCR. High number of samples may be simultaneously analyzed using this low-cost concentration method.The procedure has been applied to the analysis of bathing waters, seawater and river water and in this study, we present results analyzing groundwater samples. This high-throughput quantitative method is reliable, straightforward, and cost-effective.  相似文献   

15.
Recreational waters contaminated with human fecal pollution are a public health concern, and ensuring the safety of recreational waters for public use is a priority of both the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC). Current recreational water standards rely on fecal indicator bacteria (FIB) levels as indicators of human disease risk. However present evidence indicates that levels of FIB do not always correspond to the presence of other potentially harmful organisms, such as viruses. Thus, enteric viruses are currently tested as water quality indicators, but have yet to be successfully implemented in routine monitoring of water quality. This study utilized enteric viruses as possible alternative indicators of water quality to examine 18 different fresh and offshore recreational waters on O‘ahu, Hawai‘i, by using newly established laboratory techniques including highly optimized PCR, real time PCR, and viral infectivity assays. All sample sites were detected positive for human enteric viruses by PCR including enterovirus, norovirus genogroups I and II, and male specific FRNA coliphage. A six time-point seasonal study of enteric virus presence indicated significant variation in virus detection between the rainy and dry seasons. Quantitative PCR detected the presence of norovirus genogroup II at levels at which disease risk may occur, and there was no correlation found between enteric virus presence and FIB counts. Under the present laboratory conditions, no infectious viruses were detected from the samples PCR-positive for enteric viruses. These data emphasize both the need for additional indicators for improved monitoring of water quality, and the feasibility of using enteric viruses as these indicators. Electronic Supplementary MaterialSupplementary material is available for this article at 10.1007/s12250-015-3644-x and is accessible for authorized users.  相似文献   

16.
The relative contribution of norovirus to disease burden on society has only recently been established and they are now established as a major cause of gastroenteritis in the developed world. However, despite the medical relevance of these viruses, an efficient in vitro cell culture system for human noroviruses has yet to be developed. As a result, much of our knowledge on the basic mechanisms of norovirus biology has come from studies using other members of the Caliciviridae family of small positive stranded RNA viruses. Here we aim to summarise the recent advances in the field, highlighting how model systems have played a key role in increasing our knowledge of this prevalent pathogen.  相似文献   

17.
Aims: To study the prevalence and genotypes of waterborne pathogenic viruses in urban wastewaters in the tropical region. Methods and Results: Viruses in wastewaters collected at three water reclamation plants in Singapore were studied by molecular methods. Over a 6‐month sampling period, adenoviruses, astroviruses and both norovirus genogroups I (GI) and II (GII) were detected in 100% of the sewage and secondary effluent. Enteroviruses and hepatitis A viruses (HAV) were found in 94 and 78% of sewage, and 89 and 28% of secondary effluent, respectively. By using quantitative real‐time PCR, estimated concentrations of astrovirus in the sewage were 1–2 orders of magnitude higher than those for adenovirus, noroviruses GI and GII. Genotyping of environmental isolates revealed multiple genotypes of GI and GII noroviruses. Coxsackieviruses A, astrovirus type 1 and adenovirus type 41 were prevalent. Norovirus GII/4 and coxsackievirus A24 isolates in wastewaters were closely related to respective outbreak strains isolated previously in Singapore. Conclusions: This study showed the widespread occurrence of all tested enteric virus groups in urban wastewaters. Genetic diversity of astroviruses, enteroviruses and noroviruses in the tropical region was observed. Significance and Impact of the Study: The high prevalence and great genetic diversity of human enteric viruses in urban wastewaters strongly supports the need of further comprehensive studies for evaluating the public health risk associated with viral pathogens in water environments.  相似文献   

18.
Viral mimicry of the complement system   总被引:4,自引:0,他引:4  
The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the complement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control complement, but also have turned these interactions to their own advantage. Important examples include poxviruses, herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the various complement evasion strategies that viruses have developed to thwart the complement attack of the host. A special emphasis is given on the interactions between the viral proteins that are involved in molecular mimicry and the complement system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号