首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lignocellulosic biomass shows high potential as a renewable feedstock for use in biodiesel production via microbial fermentation. Yarrowia lipolytica, an emerging oleaginous yeast, has been engineered to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into lipids for lignocellulosic biodiesel production. Yet, the lipid yield from xylose or lignocellulosic biomass remains far lower than that from glucose. Here we developed an efficient xylose‐utilizing Y. lipolytica strain, expressing an isomerase‐based pathway, to achieve high‐yield lipid production from lignocellulosic biomass. The newly developed xylose‐utilizing Y. lipolytica, YSXID, produced 12.01 g/L lipids with a maximum yield of 0.16 g/g, the highest ever reported, from lignocellulosic hydrolysates. Consequently, this study shows the potential of isomerase‐based xylose‐utilizing Y. lipolytica for economical and sustainable production of biodiesel and oleochemicals from lignocellulosic biomass.  相似文献   

2.
The conversion of lignocellulosic sugars, in particular xylose, is important for sustainable fuels and chemicals production. While the oleaginous yeast Yarrowia lipolytica is a strong candidate for lipid production, it is currently unable to effectively utilize xylose. By introducing a heterologous oxidoreductase pathway and enabling starvation adaptation, we obtained a Y. lipolytica strain, E26 XUS, that can use xylose as a sole carbon source and produce over 15 g/L of lipid in bioreactor fermentations (29.3% of theoretical yield) with a maximal lipid productivity of 0.19 g/L/h. Genomic sequencing and genetic analysis pointed toward increases in genomic copy number of the pathway and resulting elevated expression levels as the causative mutations underlying this improved phenotype. More broadly, many regions of the genome were duplicated during starvation of Yarrowia. This strain can form the basis for further engineering to enhance xylose catabolic rates and conversion. Finally, this study also reveals the flexibility and dynamic nature of the Y. lipolytica genome, and the means at which starvation can be used to induce genomic duplications.  相似文献   

3.
Numerous value-added chemicals can be produced using xylan as a feedstock. However, the product yields are limited by low xylan utilization efficiency, as well as by carbon flux competition between biomass production and biosynthesis. Herein, a dynamic consolidated bioprocessing strategy was developed, which coupled xylan utilization and yield optimization modules. Specifically, we achieved the efficient conversion of xylan to valuable chemicals in a fully consolidated manner by optimizing the expression level of xylanases and xylose transporter in the xylan utilization module. Moreover, a cell density-dependent, and Cre-triggered dynamic system that enabled the dynamic decoupling of biosynthesis and biomass production was constructed in the yield optimization module. The final shake flask-scale titers of xylonate, produced through an exogenous pathway, and shikimate, produced through an endogenous pathway, reached 16.85 and 3.2 g L−1, respectively. This study not only provides an efficient microbial platform for the utilization of xylan, but also opens up the possibility for the large-scale production of high value-added chemicals from renewable feedstocks.  相似文献   

4.
Microbial biolipid production has become an important part of making biofuel production economically feasible. Genetic engineering has been used to improve the ability of Yarrowia lipolytica, an oleaginous yeast, to produce lipids using glucose-based media. However, few studies have examined lipid accumulation by Y. lipolytica׳s ability to utilize other hexose sugars, and as of yet, the rate-limiting steps in this process are unidentified. In this study, we investigated the de novo accumulation of lipids by Y. lipolytica when grown in glucose, fructose, and sucrose. Three Y. lipolytica wild-type (WT) strains of varied origin differed significantly in their lipid production, growth, and fructose utilization. Hexokinase (ylHXK1p) activity partially explained these differences. Overexpression of the ylHXK1 gene led to increased hexokinase activity (6.5–12 times higher) in the mutants versus the WT strains; a pronounced reduction in cell filamentation in mutants grown in fructose-based media; and improved biomass production, particularly in the mutant whose parent had shown the lowest growth capacity in fructose (French strain W29). All mutants showed improved lipid yield and production when grown on fructose, although the effect was strain dependent (23–55% improvement). Finally, we overexpressed ylHXK1 in a highly modified strain of Y. lipolytica W29 engineered to optimize oil production. This modification was combined with Saccharomyces cerevisiae invertase gene expression to evaluate the resulting mutant׳s ability to produce lipids using cheap industrial substrates, namely sucrose (a major component of molasses). Sucrose turned out to be a better substrate than either of its building blocks, glucose or fructose. Over its 96 h of growth in the bioreactors, this highly modified strain produced 9.15 g L−1 of lipids, yielding 0.262 g g−1 of biomass.  相似文献   

5.
Xylose isomerase (XylC) from Clostridium cellulovorans can simultaneously perform isomerization and fermentation of d ‐xylose, the main component of lignocellulosic biomass, and is an attractive candidate enzyme. In this study, we optimized a specified metal cation in a previously established Saccharomyces cerevisiae strain displaying XylC. We investigated the effect of each metal cation on the catalytic function of the XylC‐displaying S. cerevisiae. Results showed that the divalent cobalt cations (Co2+) especially enhanced the activity by 46‐fold. Co2+ also contributed to d ‐xylose fermentation, which resulted in improving ethanol yields and xylose consumption rates by 6.0‐ and 2.7‐fold, respectively. Utility of the extracellular xylose isomerization system was exhibited in the presence of mixed sugar. XylC‐displaying yeast showed the faster d ‐xylose uptake than the yeast producing XI intracellularly. Furthermore, direct xylan saccharification and fermentation was performed by unique yeast co‐culture system. A xylan‐degrading yeast strain was established by displaying two kinds of xylanases; endo‐1,4‐β‐xylanase (Xyn11B) from Saccharophagus degradans, and β‐xylosidase (XlnD) from Aspergillus niger. The yeast co‐culture system enabled fine‐tuning of the initial ratios of the displayed enzymes (Xyn11B:XlnD:XylC) by adjusting the inoculation ratios of Xylanases (Xyn11B and XlnD)‐displaying yeast and XylC‐displaying yeast. When the enzymes were inoculated at the ratio of 1:1:2 (1.39 × 1013: 1.39 × 1013: 2.78 × 1013 molecules), 6.0 g/L ethanol was produced from xylan. Thus, the cofactor optimization and the yeast co‐culture system developed in this study could expand the prospect of biofuels production from lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1068–1076, 2017  相似文献   

6.
A neutral xylanase (XynII) from Volvariella volvacea was identified and characterized. Unlike other modular xylanases, it consists of only a single GH10 catalytic domain with a unique C-terminal sequence (W-R-W-F) and a phenylalanine and proline-rich motif (T-P-F-P-P-F) at N-terminus, indicating that it is a novel GH10 xylanase. XynII exhibited optimal activity at pH 7 and 60 °C and stability over a broad range of pH 4.0–10.0. XynII displayed extreme highly SDS resistance retaining 101.98, 92.99, and 69.84 % activity at the presence of 300 mM SDS on birchwood, soluble oat spelt, and beechwood xylan, respectively. It remained largely intact after 24 h of incubation with proteinase K at a protease to protein ratio of 1:50 at 37 °C. The kinetic constants K m value towards beechwood xylan was 0.548 mg ml?1, and the k cat/K m ratio, reflecting the catalytic efficiency of the enzyme, was 126.42 ml mg?1 s?1 at 60 °C. XynII was a true endo-acting xylanase lacking cellulase activity. It has weak activity towards xylotriose but efficiently hydrolyzed xylans and xylooligosaccharides larger than xylotriose mainly to xylobiose. Synergistic action with acetyl xylan esterase (AXEI) from V. volvacea was observed for de-starched wheat bran. The highest degree of synergy (DS 1.42) was obtained in sequential reactions with AXEI digestion preceding XynII. The high SDS resistance and intrinsic stability suggested XynII may have potential applications in various industrial processes especially for the detergent and textile industries and animal feed industries.  相似文献   

7.
Oleosomes are discrete organelles filled with neutral lipids surrounded by a protein‐embedded phospholipid monolayer. Their simple yet robust structure, as well as their amenability to biological, chemical, and physical processing, can be exploited for various biotechnology applications. In this study, we report facile biosynthesis of functionalized oleosomes within oleaginous yeast Yarrowia lipolytica, through expression of oleosin fusion proteins. By fusing a cDNA clone of a sesame oleosin with either the coding sequence of a red fluorescent protein mCherry or a cellulosomal scaffolding protein cohesin from Clostridium cellulolyticum, these oleosin‐fusion proteins were efficiently expressed and specifically targeted to and anchored on the surface of the oleosomes within the Y. lipolytica cells. The engineered oleosomes can be easily separated from the Y. lipolytica cell extract via floating centrifugation and both mCherry and cohesin domains are shown to be functional. Upon sonication, the engineered Yarrowia oleosomes exhibit a mean diameter of 200–300 nm and are found to be highly stable. The feasibility of co‐displaying multiple proteins on the Yarrowia oleosomes was demonstrated by incubating cohesin‐displaying oleosomes with different dockerin‐fusion proteins. Based on this strategy, engineered oleosomes with both cell‐targeting and reporting activities were created and shown to be functional. Taken together, the Yarrowia oleosome surface display system in which oleosin serves as an efficient membrane anchor motif shows great promise as a simple platform for creating tunable nanoparticles. Biotechnol. Bioeng. 2013; 110: 702–710. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l?1 of KGA with mass yield of 0.95 g g?1. KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8–3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.  相似文献   

10.
Yarrowia lipolytica is the only known species in the teleomorph (i.e. sexual) genus Yarrowia and has its anamorph (i.e. asexual state) classified in the genus Candida Berkhout as Candida lipolytica. This species can be found readily in nature, has significant industrial value and is important to the food and medical fields. Candida deformans was first considered a variety of C. lipolytica and was later listed as a synonym of this species. More recent studies based on sequence variation in the nuclear rRNA gene sequences suggested C. deformans to be a separate species with no known teleomorph linked to it. In this study we show that C. deformans strains, obtained from South Africa, can mate with strains present in the CBS yeast collection and produce a Yarrowia teleomorph, described here as Yarrowia deformans. Strains of Candida yakushimensis nom. inval., a species also belonging to the Yarrowia phylogenetic clade, were also studied and described as a novel species of Yarrowia.  相似文献   

11.
Yarrowia lipolytica is a biotechnological chassis for the production of a range of products, such as microbial oils and organic acids. However, it is unable to consume xylose, the major pentose in lignocellulosic hydrolysates, which are considered a preferred carbon source for bioprocesses due to their low cost, wide abundance and high sugar content.Here, we engineered Y. lipolytica to metabolize xylose to produce lipids or citric acid. The overexpression of xylose reductase and xylitol dehydrogenase from Scheffersomyces stipitis were necessary but not sufficient to permit growth. The additional overexpression of the endogenous xylulokinase enabled identical growth as the wild type strain in glucose. This mutant was able to produce up to 80 g/L of citric acid from xylose. Transferring these modifications to a lipid-overproducing strain boosted the production of lipids from xylose. This is the first step towards a consolidated bioprocess to produce chemicals and fuels from lignocellulosic materials.  相似文献   

12.

Background

A recently constructed cellulolytic Yarrowia lipolytica is able to grow efficiently on an industrial organosolv cellulose pulp, but shows limited ability to degrade crystalline cellulose. In this work, we have further engineered this strain, adding accessory proteins xylanase II (XYNII), lytic polysaccharide monooxygenase (LPMO), and swollenin (SWO) from Trichoderma reesei in order to enhance the degradation of recalcitrant substrate.

Results

The production of EG I was enhanced using a promoter engineering strategy. This provided a new cellulolytic Y. lipolytica strain, which compared to the parent strain, exhibited higher hydrolytic activity on different cellulosic substrates. Furthermore, three accessory proteins, TrXYNII, TrLPMOA and TrSWO, were individually expressed in cellulolytic and non-cellulolytic Y. lipolytica. The amount of rhTrXYNII and rhTrLPMOA secreted by non-cellulolytic Y. lipolytica in YTD medium during batch cultivation in flasks was approximately 62 and 52 mg/L, respectively. The purified rhTrXYNII showed a specific activity of 532 U/mg-protein on beechwood xylan, while rhTrLPMOA exhibited a specific activity of 14.4 U/g-protein when using the Amplex Red/horseradish peroxidase assay. Characterization of rhTrLPMOA revealed that this protein displays broad specificity against β-(1,4)-linked glucans, but is inactive on xylan. Further studies showed that the presence of TrLPMOA synergistically enhanced enzymatic hydrolysis of cellulose by cellulases, while TrSWO1 boosted cellulose hydrolysis only when it was applied before the action of cellulases. The presence of rTrXYNII enhanced enzymatic hydrolysis of an industrial cellulose pulp and of wheat straw. Co-expressing TrXYNII and TrLPMOA in cellulolytic Y. lipolytica with enhanced EG I production procured a novel engineered Y. lipolytica strain that displayed enhanced ability to degrade both amorphous (CIMV-cellulose) and recalcitrant crystalline cellulose in complex biomass (wheat straw) by 16 and 90%, respectively.

Conclusions

This study has provided a potent cellulose-degrading Y. lipolytica strain that co-expresses a core set of cellulolytic enzymes and some accessory proteins. Results reveal that the tuning of cellulase production and the production of accessory proteins leads to optimized performance. Accordingly, the beneficial effect of accessory proteins for cellulase-mediated degradation of cellulose is underlined, especially when crystalline cellulose and complex biomass are used as substrates. Findings specifically underline the benefits and specific properties of swollenin. Although in our study swollenin clearly promoted cellulase action, its use requires process redesign to accommodate its specific mode of action.
  相似文献   

13.
Production of d S-threo-isocitric acid (ICA) by yeast meets serious difficulties since it is accompanied by a simultaneous production of citric acid (CA) in significant amounts that reduces the yield of desired product. In order to develop an effective process of ICA production, 60 yeast strains of different genera (Candida, Pichia, Saccharomyces, Torulopsis, and Yarrowia) were tested for their ability to produce ICA from rapeseed oil; as a result, wild-type strain Yarrowia lipolytica VKM Y-2373 and its mutant Y. lipolytica 704-UV4-A/NG50 were selected as promising ICA producers. The effects of temperature, pH, aeration, and concentrations of rapeseed oil, iron, and itaconic acid on ICA production by selected strains were studied. Under optimal conditions (pH 6.0; aeration 50–55 %; rapeseed oil concentration of 20–60 gl?1, iron ion concentration of 1.2 mg l?1, and itaconic acid amount of 30 mM), selected strains of Y. lipolytica produced predominantly ICA with a low amount of a by-product, CA.  相似文献   

14.
Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions. Total solids were degraded into volatile fatty acids and gases during the first 24 h. Zymography showed that xylanases of 24, 34, 85, 180, and 200 kDa were highly active during the first 24 h. Therefore, these xylanases are considered to be crucial for xylan degradation during treatment with rumen fluid. Metagenomic analysis revealed that the rumen microbial community’s structure and metabolic function temporally shifted during xylan biodegradation. Although statistical analyses did not reveal significantly positive correlations between xylanase activities and known xylanolytic bacterial genera, they positively correlated with protozoal (e.g., Entodinium, Diploplastron, and Eudiplodinium) and fungal (e.g., Neocallimastix, Orpinomyces, and Olpidium) genera and unclassified bacteria. Our findings suggest that rumen protozoa, fungi, and unclassified bacteria are associated with key xylanase activities, accelerating xylan biodegradation into volatile fatty acids and gases, during treatment of lignocellulosic biomass with rumen fluid.  相似文献   

15.
The yeast Yarrowia lipolytica has developed very efficient mechanisms for breaking down and using hydrophobic substrates. It is considered an oleaginous yeast, based on its ability to accumulate large amounts of lipids. Completion of the sequencing of the Y. lipolytica genome and the existence of suitable tools for genetic manipulation have made it possible to use the metabolic function of this species for biotechnological applications. In this review, we describe the coordinated pathways of lipid metabolism, storage and mobilization in this yeast, focusing in particular on the roles and regulation of the various enzymes and organelles involved in these processes. The physiological responses of Y. lipolytica to hydrophobic substrates include surface-mediated and direct interfacial transport processes, the production of biosurfactants, hydrophobization of the cytoplasmic membrane and the formation of protrusions. We also discuss culture conditions, including the mode of culture control and the culture medium, as these conditions can be modified to enhance the accumulation of lipids with a specific composition and to identify links between various biological processes occurring in the cells of this yeast. Examples are presented demonstrating the potential use of Y. lipolytica in fatty-acid bioconversion, substrate valorization and single-cell oil production. Finally, this review also discusses recent progress in our understanding of the metabolic fate of hydrophobic compounds within the cell: their terminal oxidation, further degradation or accumulation in the form of intracellular lipid bodies.  相似文献   

16.
Yarrowia lipolytica as an oleaginous yeast is capable of growing in various non-conventional hydrophobic substrate types, especially industrial wastes. In this study, the content of thiamine (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6), biotin (vitamin B7) and folic acid (vitamin B9) in the wet biomass of Y. lipolytica strains cultivated in biofuel waste (SK medium), compared to the standard laboratory YPD medium, was assessed. Additionally, the biomass of Y. lipolytica A-101 grown in biofuel waste (SK medium) was dried and examined for B vitamins concentration according to the recommended microbial methods by AOAC Official Methods. The mean values of these vitamins per 100 g of dry weight of Y. lipolytica grown in biofuel waste (SK medium) were as follows: thiamine 1.3 mg/100 g, riboflavin 5.3 mg/100 g, pyridoxine 4.9 mg/100 g, biotin 20.0 µg/100 g, and folic acid 249 µg/100 g. We have demonstrated that the dried biomass is a good source of B vitamins which can be used as nutraceuticals to supplement human diet, especially for people at risk of B vitamin deficiencies in developed countries. Moreover, the biodegradation of biofuel waste by Y. lipolytica is desired for environmental protection.  相似文献   

17.
Genes encoding glycosyl hydrolase family 11 (GH11) xylanases and xylanases have been identified from Pseudobutyrivibrio xylanivorans. In contrast, little is known about the diversity and distribution of the GH10 xylanase in strains of P. xylanivorans. Xylanase and associated activities of P. xylanivorans have been characterized in detail in the type strain, Mz5. The aim of the present study was to identify GH10 xylanase genes in strains 2 and Mz5 of P. xylanivorans. In addition, we evaluated degradation and utilization of xylan by P. xylanivorans 2 isolated from rumen of Creole goats. After a 12-h culture, P. xylanivorans 2 was able to utilize up to 53 % of the total pentose content present in birchwood xylan (BWX) and to utilize up to 62 % of a ethanol-acetic acid-soluble fraction prepared from BWX. This is the first report describing the presence of GH10 xylanase-encoding genes in P. xylanivorans. Strain 2 and Mz5 contained xylanases which were related to GH10 xylanase of Butyrivibrio sp. Identifying xylanase-encoding genes and activity of these enzymes are a step toward understanding possible functional role of P. xylanivorans in the rumen ecosystem and contribute to providing an improved choice of enzymes for improving fiber digestion in ruminant animals, agricultural biomass utilization for biofuel production, and other industries.  相似文献   

18.
A new xylanase activity (XynII) was isolated from liquid state cultures of Acrophialophora nainiana containing birchwood xylan as carbon source. XynII was purified to apparent homogeneity by gel filtration and ion exchange chromatographies. The enzyme was optimally active at 55 degrees C and pH 7.0. XynII had molecular mass of 22630+/-3.0 and 22165 Da, as determined by mass spectrometry and SDS-PAGE, respectively. The purified enzyme was able to act only on xylan as substrate. The apparent K(m) values on soluble and insoluble birchwood xylans were 40.9 and 16.1 mg ml(-1), respectively. The enzyme showed good thermal stability with half lives of 44 h at 55 degrees C and ca. 1 h at 60 degrees C The N-terminal sequence of XynII showed homology with a xylanase grouped in family G/11. The enzyme did not show amino acid composition similarity with xylanases from some fungi and Bacillus amyloliquefaciens.  相似文献   

19.
Although there are numerous oleochemical applications for ricinoleic acid (RA) and its derivatives, their production is limited and subject to various safety legislations. In an effort to produce RA from alternative sources, we constructed a genetically modified strain of the oleaginous yeast Yarrowia lipolytica. This strain is unable to perform β-oxidation and is invalidated for the native triacylglycerol (TAG) acyltransferases (Dga1p, Dga2p, and Lro1p) and the ?12 desaturase (Fad2p). We also expressed the Ricinus communis ?12 hydroxylase (RcFAH12) under the control of the TEF constitutive promoter in this strain. However, RA constituted only 7 % of the total lipids produced by this modified strain. By contrast, expression of the Claviceps purpurea hydroxylase CpFAH12 in this background resulted in a strain able to accumulate RA to 29 % of total lipids, and expression of an additional copy of CpFAH12 drove RA accumulation up to 35 % of total lipids. The co-expression of the C. purpurea or R. communis type II diacylglycerol acyltransferase (RcDGAT2 or CpDGAT2) had negative effects on RA accumulation in this yeast, with RA levels dropping to below 14 % of total lipids. Overexpression of the native Y. lipolytica PDAT acyltransferase (Lro1p) restored both TAG accumulation and RA levels. Thus, we describe the consequences of rerouting lipid metabolism in this yeast so as to develop a cell factory for RA production. The engineered strain is capable of accumulating RA to 43 % of its total lipids and over 60 mg/g of cell dry weight; this is the most efficient production of RA described to date.  相似文献   

20.
The yeast Yarrowia lipolytica is capable of high-intensity synthesis (overproduction) of citric (CA) and isocitric (ICA) acids under nitrogen limitation. The ratio of the synthesized acids depends on the producing strains used and the expression level of the aconitate hydratase gene (ACO1). Recombinant variants with overexpression of the multicopy ACO1 gene have been obtained based on the natural ICA-producing strain Y. lipolytica 672. A recombinant strain Y. lipolytica 20, which has an isocitrate-citrate ratio shifted towards ICA (2.3: 1) as compared to the parental strain (1.1: 1), has been selected. Culturing of the 20 variant in a 10 L reactor has resulted in the production of 72.6 g/L of ICA and 29.0 g/L of CA with a ratio of 2.5: 1. This makes it possible to regard Y. lipolytica 20 as a promising producer for the development of an industrial process for isocitrate production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号