首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

2.
3.
AKAP12/Gravin (A kinase anchor protein 12) belongs to the group of A-kinase scaffold proteins and functions as a tumor suppressor in some human primary cancers. While AKAP12 is found consistently downregulated in hepatocellular carcinoma (HCC), its involvement in hepatocarcinogenesis has not been fully elucidated. We identified targeting sites for miR-103 in the 3′-untranslated region (3′-UTR) of AKAP12 by bioinformatic analysis and confirm their function by a luciferase reporter gene assay. We reveal miR-103 expression to be inversely correlated with AKAP12 in HCC tissue samples and show that overexpressed miR-103 promotes cell proliferation and inhibits apoptosis by downregulating AKAP12 expression in HCC cell lines. On the other hand, repression of miR-103 suppresses proliferation and promotes apoptosis in HCC cells by increasing AKAP12. In xenografted HCC tumors, overexpression of AKAP12 suppresses tumor growth whereas overexpression of miR-103 enhances tumor growth while repressing AKAP12. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we investigated whether AKAP12 expression affected telomerase activity in HCC cells. Both AKAP12 overexpression and protein kinase Cα (PKCα) inhibition prevent nuclear translocation and phosphorylation of TERT and reduce telomerase activity in HCC cells. These findings indicate that miR-103 potentially acts as an oncogene in HCC by inhibiting AKAP12 expression and raise the possibility that miR-103 increases telomerase activity by increasing PKCα activity. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for HCC treatment.  相似文献   

4.
Circular RNAs (circRNAs) have been reported to regulate the gene expression through sponging corresponding microRNAs in multiple malignant tumors, including hepatocellular carcinoma (HCC). Up to now, the effects of circ_0001178 in HCC are barely known. In our current work, we tested circ_0001178 expression in HCC tissues and HCC cells and found it was greatly elevated. Then, we evaluated the function of circ_0001178 on HCC cell proliferation. We found HepG2 and Huh-7 cell proliferation was repressed after circ_0001178 shRNA was infected into the cells. Moreover, flow cytometry evidenced that HepG2 and Huh-7 cell apoptosis was markedly triggered and cell cycle was arrested. Meanwhile, it was shown that HCC cell migration and invasion capacity were markedly inhibited by loss of circ_0001178. Knockdown of circ_0001178 restrained HCC tumor growth in vivo. Then, miR-382 was predicted and confirmed as the target of circ_0001178. Circ_0001178 was demonstrated to modulate miR-382 expression negatively. The effect of circ_0001178 on HCC tumor was rescued by miR-382 overexpression. Furthermore, vascular epithelial growth factor A (VEGFA) is identified in various cancers. Currently, VEGFA was proved to be the downstream target of miR-382. To conclude, this research revealed that circ_0001178 induced HCC progression via modulating miR-382 and VEGFA axis.  相似文献   

5.
Accepted as a malignant tumor worldwide, cervical cancer (CC) has attracted much attention for its high incidence and mortality rates. Previous studies have elucidated the critical regulatory function that long noncoding RNAs (lncRNAs) exert on the tumorigenesis and progression of diverse tumors. Although multiple investigations have depicted that LINC00958 has a great impact on the complex biological process of many cancers, knowledge concerning the regulatory role of LINC00958 in CC remains limited and needs to be further explored. In our study, LINC00958 expression was evidently overexpressed in CC tissues and cells. Besides this, LINC00958 negatively regulated miR-625-5p expression and was verified to bind with miR-625-5p in CC. Subsequently, it was testified by a series of experiments that LINC00958 promotes CC cell proliferation and metastasis by sponging miR-625-5p. Furthermore, the leucine-rich repeat containing the eight family member E (LRRC8E) could bind with miR-625-5p, and its expression was negatively modulated by miR-625-5p, whereas positively regulated by LINC00958 in CC. Final rescue assays verified the effects of LINC0095/LRRC8E interaction and miR-625-5p/LRRC8E interaction on CC cell proliferation and metastasis. Collectively, LINC00958 facilitates CC cell proliferation and metastasis via the miR-625-5p/LRRC8E axis.  相似文献   

6.
Circular RNA (circRNAs) functions vital in the pathogenesis and progression of hepatocellular carcinoma (HCC). However, the expressions and functions of certain circRNAs on metastasis and proliferation of that cancer is still unclear. Bioinformation analysis and qRT-PCR indicated that CircC16orf62 was prominent upregulated in HCC of which the expression level was positively associated to cancer’s malignant progression. Gain or loss-of-function studies indicated that the reduction of CircC16orf62 expression promotes the proliferation, invasion, and glycolysis of HCC in vitro and in vivo. The bioinformatic analysis found that miR-138-5p and PTK2 were the downstream target of CircC16or62. Then, the FISH(Fluorescence immunoin situ hybridization) and cell nucleoplasmic separation determined that CircC16orf62 located in the cell cytoplasm. Plasmid vectors or siRNAs were used to change the expression of CircC16orf62, miR-138-5p, and PTK2 in PC cell lines. CircC16orf62 functioned as a molecular sponge for miR-138-5p, and a competitive endogenous RNA for PTK2, promoting AKT/mTOR pathway activation. Our observations lead us to conclude that CircC16orf62 functions as an oncogene in HCC progression, behaving as a competitive endogenous RNA for miR-138-5p binding, thus activating the AKT/mTOR pathway. In conclusion, CircC16orf62 is an oncogene through the miR-138-5p/PTK2/Akt axis in HCC cells, indicating CircC16orf62 can be a therapeutic target with potentiality for liver cancer and a predictive marker for people with HCC.Subject terms: Cancer, Cell growth  相似文献   

7.
Cisplatin (DDP) -based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. Copper transporter protein 1 (CTR1), a copper influx transporter required for high affinity copper (probably reduced Cu I) transport into the cell, reportedly promotes a significant fraction of DDP internalization in tumor cells. In the present study, we evaluated the function of CTR1 in the cell proliferation of cervical cancer upon DDP treatment. MicroRNAs (miRNAs) have been regarded as essential regulators of cell proliferation, apoptosis, migration, as well as chemoresistance. By using online tools, we screened for candidate miRNAs potentially regulate CTR1, among which miR-130a has been proved to promote cervical cancer cell proliferation through targeting PTEN in our previous study. In the present study, we investigated the role of miR-130a in cervical cancer chemoresistance to DDP, and confirmed the binding of miR-130a to CTR1. SOX9 also reportedly act on cancer chemoresistance. In the present study, we revealed that SOX9 inversely regulated miR-130a through direct targeting the promoter of miR-130a. Consistent with previous studies, SOX9 could affect cervical cancer chemoresistance to DDP. Taken together, we demonstrated a SOX9/miR-130a/CTR1 axis which modulated the chemoresistance of cervical cancer cell to DDP, and provided promising targets for dealing with the chemoresistance of cervical cancer.  相似文献   

8.

Background

Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC.

Methods

miR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3β-involved Wnt/β-catenin signaling in HCC growth and metastasis.

Results

Our results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins.

Conclusion

Altogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3β-involved Wnt/β-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.
  相似文献   

9.
MicroRNAs (miRNAs) have been confirmed to play pivotal roles in hepatocellular carcinoma (HCC) carcinogenesis. However, the underlying function of microRNA-33b (miR-33b) in HCC remains unclear. Here, we found that miR-33b level was significantly reduced in both HCC tissues and tumor cell lines. Further, luciferase reporter assay and western blot analysis confirmed that Friend leukemia virus integration 1 (Fli-1) was a direct target of miR-33b. Overexpression of miR-33b dramatically suppressed HCC tumor cell proliferation and cell mobility, but facilitated tumor cell apoptosis in vitro. Besides, restoration of Fli-1 partially attenuated miR-33b-mediated inhibition of cell growth and metastasis via activating Notch1 signaling and its downstream effectors. Our findings demonstrate the important role of miR-33b/Fli-1 axis in HCC progression and provide novel therapeutic candidates for HCC clinical treatment.  相似文献   

10.
BackgroundSevoflurane (SEVO) inactivates the aggressiveness of hepatocellular carcinoma (HCC) cells by mediating microRNAs (miRNAs). Hence, we delved into the functional role of miR-148a-3p mediated by SEVO in HCC.MethodsLiver cells (L02) and HCC cells (HCCLM3 and Huh7) were exposed to SEVO to detect cell viability in HCC. HCCLM3 and Huh7 cells were treated with restored miR-148a-3p or depleted Rho-associated protein kinase 1 (ROCK1) to elucidate their roles in HCC cells' biological characteristics. HCCLM3 and Huh7 cells were treated with SEVO, and/or vectors that changed miR-148a-3p or ROCK1 expression to identify their combined functions in HCC cell progression. Tumor xenograft in nude mice was performed to determine growth ability of tumor. The target relationship between miR-148a-3p and ROCK1 was verified.ResultsSEVO inhibited proliferation, invasion and migration and enhanced apoptosis of HCCLM3 and Huh7 cells. MiR-148a-3p up-regulation or ROCK1 down-regulation inhibited HCCLM3 and Huh7 cell progression. ROCK1 was determined to be target gene of miR-148a-3p. Down-regulating miR-148a-3p or overexpressing ROCK1 mitigated cell aggressiveness inhibition caused by SEVO.ConclusionOur study elucidates that microRNA-148a-3p enhances the effects of sevoflurane on inhibiting proliferation, invasion and migration and enhancing apoptosis of HCC cells through suppression of ROCK1.  相似文献   

11.
12.
13.
The long non-coding FGD5-AS1 (LncFGD5-AS1) has been reported to be a novel carcinogenic gene and participant in regulating tumor progression by sponging microRNAs (miRNAs). However, the pattern of expression and the biological role of FGD5-AS1 in hepatocellular carcinoma (HCC) remains largely unknown. The expression level of FGD5-AS1 in tumor tissues and cell lines was measured by RT-qPCR. CCK-8, EdU, flow cytometry, wound healing and transwell chamber assays were performed to investigate the role of FGD5-AS1 in cell proliferation, apoptosis, migration, and invasion in HCC. Dual luciferase reporter, and RNA pull-down assays were performed to identify the regulatory interactions among FGD5-AS1, miR-873-5p and GTP-binding protein 4 (GTPBP4). We found that the expression of FGD5-AS1 was upregulated in HCC tissues and cell lines. Moreover, the knockdown of FGD5-AS1 suppressed cell proliferation, migration and invasion, and induced apoptosis in HCC cells. Further studies demonstrated that FGD5-AS1 could function as a competitive RNA by sponging miR-873-5p in HCC cells. Moreover, GTPBP4 was identified as direct downstream target of miR-873-5p in HCC cells and FGD5-AS1mediated the effects of GTPBP4 by competitively binding with miR-873-5p. Taken together, this study demonstrated the regulatory role of FGD5-AS1 in the progression of HCC and identified the miR-873-5p/GTPBP4 axis as the direct downstream pathway. It represents a promising novel therapeutic strategy for HCC patients.Key words: Hepatocellular carcinoma, FGD5-AS1, miR-873-5p, GTPBP4  相似文献   

14.
Chemotherapeutic insensitivity remains a major obstacle to treating osteosarcoma effectively. Recently, increasing evidence has suggested that microRNAs (miRNAs) are involved in drug resistance. However, the effect of miR-138 on cisplatin chemoresistance in osteosarcoma has not been reported. We used real-time PCR to detect the expression of mature miR-138 in osteosarcoma tissues and cell lines. Cell proliferation, invasion, and migration assays were used to observe changes to the osteosarcoma malignant phenotype. MiR-138 was downregulated in osteosarcoma tissues and cell lines, and miR-138 overexpression negatively regulated osteosarcoma cell proliferation, migration, and invasion. We also verified that EZH2 is a direct target of miR-138. Furthermore, enhancing EZH2 expression reduced the inhibitory effects of miR-138 on osteosarcoma. Proliferation, apoptosis assays and caspase-3 activity assay confirmed that elevated miR-138 expression enhanced osteosarcoma cell chemosensitivity to cisplatin by targeting EZH2. In conclusion, the present study demonstrates that miR-138 acts as a tumor suppressor by enhancing osteosarcoma cell chemosensitivity and supports its potential application for treating osteosarcoma in the future.  相似文献   

15.
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.  相似文献   

16.
Long intergenic non-coding RNA 00152 (LINC00152) is aberrantly expressed in various human malignancies and plays an important role in the pathogenesis. Here, we found that LINC00152 is upregulated in hepatocellular carcinoma (HCC) tissues as compared to adjacent non-neoplastic tissues; gain-and-loss-of-function analyses in vitro showed that LINC00152 facilitates HCC cell cycle progression through regulating the expression of CCND1. LINC00152 knockdown inhibits tumorigenesis in vivo. MS2-RIP analysis indicated that LINC00152 binds directly to miR-193a/b-3p, as confirmed by luciferase reporter assays. Furthermore, ectopic expression of LINC00152 partially halted the decrease in CCND1 expression and cell proliferation capacity induced by miR-193a/b-3p overexpression. Thus, LINC00152 acts as a competing endogenous RNA (ceRNA) by sponging miR-193a/b-3p to modulate its target gene, CCND1. Our findings establish a ceRNA mechanism regulating cell proliferation in HCC via the LINC00152/miR-193a/b-3p/CCND1 signalling axis, and identify LINC00152 as a potential therapeutic target for HCC.  相似文献   

17.
Mucin 15 (MUC15) is reportedly aberrant in human malignancies, including hepatocellular carcinoma (HCC). However, the role of MUC15 in the regulation of liver tumor-initiating cells (T-ICs) remains unknown. Here, we report that expression of MUC15 is downregulated in liver T-ICs, chemoresistance and recurrent HCC samples. Functional studies reveal that MUC15 inhibits hepatoma cells self-renewal, malignant proliferation, tumorigenicity, and chemoresistance. Mechanistically, MUC15 interacts with c-MET and subsequently inactivates the PI3K/AKT/SOX2 signaling pathway. Moreover, we find that miR-183-5p.1 directly targets MUC15 3′-UTR in liver T-ICs. Coincidentally, SOX2 feedback inhibits MUC15 expression by directly transactivating miR-183-5p.1, thus completing a feedforward regulatory circuit in liver T-ICs. Importantly, MUC15/c-MET/PI3K/AKT/SOX2 axis determines the responses of hepatoma cells to lenvatinib treatment, and MUC15 overexpression abrogated lenvatinib resistance. Analysis of patient cohort, patient-derived tumor organoids and patient-derived xenografts further suggests that the MUC15 may predict lenvatinib benefits in HCC patients. Collectively, our findings suggest the crucial role of the miR-183-5p.1/MUC15/c-MET/PI3K/AKT/SOX2 regulatory circuit in regulating liver T-ICs properties, suggesting potential therapeutic targets for HCC.Subject terms: Cancer stem cells, Tumour biomarkers, Liver cancer  相似文献   

18.
Dysregulation of microRNAs frequently contributes to the occurrence and progression of human diseases, including hepatocellular carcinoma (HCC). In this study, the role of miR-450b-3p in HCC was investigated. Gene Expression Omnibus database and HCC specimens were used to evaluate the expression level of miR-450b-3p and the patient's prognosis. Cell functional analyses and tumor xenograft model were used to assess the role of miR-450b-3p in HCC. Bioinformatics was used to predict the downstream target gene of miR-450b-3p, which was verified by dual-luciferase reporter assay. MiR-450b-3p was found to be downregulated in HCC cell lines and tissues, compared with nontransformed immortal hepatic cells and adjacent normal liver tissues, respectively. Lower expression of miR-450b-3p was associated with poor overall survival and disease-free survival in patients with HCC. Ectopic expression of miR-450b-3p inhibited HCC cell viability, colony formation, and cell-cycle progression in vitro, and suppressed the growth of HCC xenograft tumors in vivo. Interestingly, a negative correlation between miR-450b-3p and phosphoglycerate kinase 1 (PGK1) protein was observed among HCC specimens. Additionally, miR-450b-3p inhibited PGK1 expression and phosphorylation of protein kinase B in HCC cell lines. Further experiments confirmed that PGK1 was a direct target of miR-450b-3p. Moreover, restoration of PGK1 abrogated the inhibitory effect of miR-450b-3p on HCC proliferation and cell division. In conclusion, miR-450b-3p is downregulated in human HCC and exerts tumor suppressive effects at least in part by inhibiting PGK1.  相似文献   

19.
The expression of neutrophil gelatinase-associated lipocalin (NGAL) is up-regulated in some cancers; therefore NGAL has potential as a tumor biomarker. Although the regulation mechanism for this is unknown, one study has shown that it is likely to involve a microRNA (miRNA). Here, we investigate the relation between miRNA expression and NGAL expression, and the role of NGAL in tumorigenesis. Using miRNA target–detecting software, we analyze the mRNA sequence of NGAL and identify a target site for microRNA-138 (miR-138) in nucleotides 25–53 of the 3′ UTR. We then analyze NGAL and miR-138 expression in three cancer cell lines originating from breast, endometrial and pancreatic carcinomas (the MCF-7, RL95-2 and AsPC-1 cell lines), respectively, using quantitative (real-time) PCR and western blot analysis. Metastasis is a critical event in cancer progression, in which malignant cell proliferation, migration and invasion increase. To determine whether miR-138-regulated NGAL expression is associated with metastasis, the proliferation and migration of the cell line are examined after miR-138 transfection. Using nude mice, we examine both the tumorigenicity of these cell lines and of miR-138-transfected cancer cells in vivo, as well as the effect of treating tumors with an antibody against NGAL. Our results show that these cancer cell lines down-regulate NGAL when miR-138 is highly expressed. Ectopic transfection of miR-138 suppresses NGAL expression and cell migration in RL95-2 and AsPC-1 cells, demonstrating that miR-138-regulated NGAL expression is associated with cell migration. Additionally, injection of the NGAL antibody diminishes NGAL-mediated tumorigenesis in nude mice, and miR-138 transfection of cancer cells reduces tumor formation. As the cell proliferation data showed that the tumor size should be regulated by NGAL-related cell growth. Taken together, our results indicate that NGAL may be a good target for cancer therapy and suggest that miR-138 acts as a tumor suppressor and may prevent metastasis.  相似文献   

20.
Hepatocellular carcinoma (HCC) is known as a frequent type of primary cancer in the liver, and it is the third-most common cause of cancer-related death all over the world. However, the molecular mechanism in the progression of HCC is still unclear. The current study was designed to investigate the expression and function of microRNA-34a (miR-34a) in HCC. In HCC tissues and cells, the expression levels of miR-34a were analyzed by quantitative real-time polymerase chain reaction. The association between the level of miR-34a and hexokinase (HK)-1 was also investigated via luciferase reporter assay. Cell viability and proliferation were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. To assess whether miR-34a can limit tumor growth in vivo, animal models and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used for examining the role of miR-34a on the development of HCC and cell apoptosis. The expression level of miR-34a was reduced in HCC samples and cells. The expression of miR-34a was associated with the viability and proliferation capacity of HCC cells, and miR-34a could inhibit HCC cells proliferation by inhibiting HK1. In the mouse model of HCC, volumes and weight of the tumors were significantly decreased by transfection with miR-34a mimic compared with the control group. Furthermore, miR-34a mimics could induce apoptosis in a greater proportion of cells compared with the control group. Taken together, the data may provide some novel insights into the molecular mechanism of miR-34a and HK1 in the progression of HCC. Thus, miR-34a/HK1 axis might be a novel promising therapeutic target for treating HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号