首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Inflammation is as an important component of intestinal tumorigenesis. The activation of Toll‐like receptor 4 (TLR4) signalling promotes inflammation in colitis of mice, but the role of TLR4 in intestinal tumorigenesis is not yet clear. About 80%–90% of colorectal tumours contain inactivating mutations in the adenomatous polyposis coli (Apc) tumour suppressor, and intestinal adenoma carcinogenesis in familial adenomatous polyposis (FAP) is also closely related to the germline mutations in Apc. The ApcMin/+ (multiple intestinal neoplasia) model mouse is a well‐utilized model of FAP, an inherited form of intestinal cancer. In this study, ApcMin/+ intestinal adenoma mice were generated on TLR4‐sufficient and TLR4‐deficient backgrounds to investigate the carcinogenic effect of TLR4 in mouse gut by comparing mice survival, peripheral blood cells, bone marrow haematopoietic precursor cells and numbers of polyps in the guts of ApcMin/+ WT and ApcMin/+ TLR4?/? mice. The results revealed that TLR4 had a critical role in promoting spontaneous intestinal tumorigenesis. Significant differential genes were screened out by the high‐throughput RNA‐Seq method. After combining these results with KEGG enrichment data, it was determined that TLR4 might promote intestinal tumorigenesis by activating cytokine‐cytokine receptor interaction and pathways in cancer signalling pathways. After a series of validation experiments for the concerned genes, it was found that IL6, GM‐CSF (CSF2), IL11, CCL3, S100A8 and S100A9 were significantly decreased in gut tumours of ApcMin/+ TLR4?/? mice compared with ApcMin/+ WT mice. In the functional study of core down‐regulation factors, it was found that IL6, GM‐CSF, IL11, CCL3 and S100A8/9 increased the viability of colon cancer cell lines and decreased the apoptosis rate of colon cancer cells with irradiation and chemical treatment.  相似文献   

2.
Mutation of the adenomatous polyposis coli (APC gene), an early event in the adenoma-carcinoma sequence, is present in 70-80% of sporadic human colorectal adenomas and carcinomas. To test the hypothesis that mutation of the APC gene alters microbial interactions with host intestinal mucosa prior to the development of polyposis, culture-independent methods (targeted qPCR assays and Illumina sequencing of the 16S rRNA gene V1V2 hypervariable region) were used to compare the intestinal microbial composition of 30 six-week old C57BL/6 APCMin/+ and 30 congenic wild type (WT) mice. The results demonstrate that similar to 12-14 week old APCMin/+ mice with intestinal neoplasia, 6 week old APCMin/+ mice with no detectable neoplasia, exhibit an increased relative abundance of Bacteroidetes spp in the colon. Parallel mouse RNA sequence analysis, conducted on a subset of proximal colonic RNA samples (6 APCMin/+, 6 WT) revealed 130 differentially expressed genes (DEGs, fold change ≥ 2, FDR <0.05). Hierarchical clustering of the DEGs was carried out by using 1-r dissimilarity measurement, where r stands for the Pearson correlation, and Ward minimum variance linkage, in order to reduce the number of input variables. When the cluster centroids (medians) were included along with APC genotype as input variables in a negative binomial (NB) regression model, four of seven mouse gene clusters, in addition to APC genotype, were significantly associated with the increased relative abundance of Bacteroidetes spp. Three of the four clusters include several downregulated genes encoding immunoglobulin variable regions and non-protein coding RNAs. These results support the concept that mutation of the APC gene alters colonic-microbial interactions prior to polyposis. It remains to be determined whether interventions directed at ameliorating dysbiosis in APCMin/+mice, such as through probiotics, prebiotics or antibiotics, could reduce tumor formation.  相似文献   

3.
The adenomatous polyposis coli (APC) gene is known to act as a tumor suppressor gene in both sporadic and hereditary colorectal cancer by negatively regulating WNT signaling. Familial adenomatous polyposis (FAP) patients develop intestinal polyps due to the presence of a single germline mutation in APC. The severity of the FAP phenotype is a function of the position of the APC mutation, indicating a complex role for APC that extends beyond the canonical WNT pathway. APC encodes a large protein with multiple functional domains, including an armadillo repeat domain that has been linked to protein–protein interactions. To determine the effect of the armadillo repeat domain on intestinal tumorigenesis, we generated a congenic mouse line (Apc Δ242 ) carrying a gene trap cassette between exons 7 and 8 of the murine Apc gene. Apc Δ242/+ mice express a truncated Apc product lacking the armadillo repeat domain as part of a fusion protein with β-geo. Expression of the fusion product was confirmed by X-gal staining, ensuring that Apc Δ242 is not a null allele. In contrast, Apc Min/+ mice produce a truncated Apc product that contains an intact armadillo repeat domain. On the C57BL/6J background, Apc Δ242/+ mice develop more polyps than do Apc Min/+ mice along the entire length of the small intestine; however, polyps were significantly smaller in Apc Δ242/+ mice. In addition, polyp multiplicity in Apc Δ242/+ mice is affected by polymorphisms between inbred strains. These data suggest that the armadillo repeat domain of the Apc protein suppresses tumor initiation in the murine intestine while also promoting tumor growth.  相似文献   

4.
5.
Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/β-catenin signaling. Notably, genotype–phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/β-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/β-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc+/1572T mice suggests that specific dosages of Wnt/β-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.  相似文献   

6.
APC is often cited as a prime example of a tumor suppressor gene. Truncating germline and somatic mutations (or, infrequently, allelic loss) occur in tumors in FAP (familial adenomatous polyposis). Most sporadic colorectal cancers also have two APC mutations. Clues from attenuated polyposis, missense germline variants with mild disease and the somatic mutation cluster region (codons 1,250-1,450) indicate, however, that APC mutations might not result in simple loss of protein function. We have found that FAP patients with germline APC mutations within a small region (codons 1,194-1,392 at most) mainly show allelic loss in their colorectal adenomas, in contrast to other FAP patients, whose 'second hits' tend to occur by truncating mutations in the mutation cluster region. Our results indicate that different APC mutations provide cells with different selective advantages, with mutations close to codon 1,300 providing the greatest advantage. Allelic loss is selected strongly in cells with one mutation near codon 1,300. A different germline-somatic APC mutation association exists in FAP desmoids. APC is not, therefore, a classical tumor suppressor. Our findings also indicate a new mechanism for disease severity: if a broader spectrum of mutations is selected in tumors, the somatic mutation rate is effectively higher and more tumors grow.  相似文献   

7.
Colorectal cancer is generally believed to progress through an adenoma - carcinoma sequence. Adenomatous polyposis coli (APC) mutations serve as the initiating event in adenoma formation. The ApcMin/+ mouse harbors a mutation in the APC gene, which is similar or identical to the mutation found in individuals with familial adenomatous polyposis and 70% of all sporadic CRC cases. Autophagy is a constitutive process required for proper cellular homeostasis. However, its role in intestinal adenoma formation is still controversial. Atractylenolide I (AT1) is a sesquiterpenoid that possesses various clinically relevant properties such as anti-tumor and anti-inflammatory activities. The role of AT1 on adenoma formation was tested in ApcMin/+ mice and its underlying mechanism in regulating autophagy was documented. D-dopachrome tautomerase (D-DT) was identified as a potential target of AT1 by an proteomics-based approach. The effects of p53 modification on autophgic flux was monitored in p53?/? and p53+/+ HCT116 cells. Small interfering RNA was used to investigate the function of Atg7 and D-DT on autophagy programme induce by AT1. AT1 effectively reduced the formation of adenoma and downregulated the tumorigenic proteins in ApcMin/+ mice. Importantly, AT1 stimulated autophagic flux through downregulating acetylation of p53. Activation of Sirt1 by AT1 was essential for the deacetylation of p53 and downregulation of D-DT. The lowered expression of COX-2 and β-catenin by AT1 were partly recovered by Atg7 knockdown. AT1 activates autophagy machinery to downregulate D-DT and reduce intestinal adenoma formation. This discovery provides evidence in vivo and in vitro that inducing autophagy by natural products maybe a potential therapy to ameliorate colorectal adenoma formation.  相似文献   

8.
9.
Sporadic and familial colorectal tumours usually harbour biallelic adenomatous polyposis coli (APC)‐associated mutations that result in constitutive activation of Wnt signalling. Furthermore, APC activates Asef and Asef2, which are guanine‐nucleotide exchange factors specific for Rac1 and Cdc42. Here, we show that Asef and Asef2 expression is aberrantly enhanced in intestinal adenomas and tumours. We also show that deficiency of either Asef or Asef2 significantly reduces the number and size of adenomas in ApcMin/+ mice, which are heterozygous for an APC mutation and spontaneously develop adenomas in the intestine. We observed that the APC–Asef/Asef2 complex induces c‐Jun amino‐terminal kinase‐mediated transactivation of matrix metalloproteinase 9, and is required for the invasive activity of colorectal tumour cells. Furthermore, we show that Asef and Asef2 are required for tumour angiogenesis. These results suggest that Asef and Asef2 have a crucial role in intestinal adenoma formation and tumour progression, and might be promising molecular targets for the treatement of colorectal tumours.  相似文献   

10.
Cyclin dependent kinase 4 (Cdk4) is a cell cycle regulator involved in early G1 cell cycle progression and has been indirectly implicated in angiogenesis in the Min mouse system, a mouse that harbors a mutation in the Apc gene. Apc+/Min mice when crossed with Ink4a/arf-/- mice, exhibited increased angiogenesis of colorectal tumors suggesting that dysregulation of Cdk4 (due to loss of Ink4a-mediated suppression) may contribute to enhanced angiogenesis. To demonstrate a direct role for Cdk4 in angiogenesis, we crossed mice that have an activated Cdk4, Cdk4R24C/R24C mice, with Apc+/Min mice and examined levels of angiogenesis in intestinal tumors formed. Our results show an increase in the percentage of highly vascularized tumors in Cdk4R24C/R24C:ApcMin/+ and Cdk4+/R24C:ApcMin/+ mice compared to Cdk4+/+:ApcMin/+ mice. In addition immunohistochemical analysis showed an increase in CD-31 staining localized to endothelial cells of Cdk4R24C/R24C:ApcMin/+ mouse tumors, supporting the hypothesis of increased vasculature in these tumors. Further analysis showed an increase in the expression of the E2F1 target proteins Vegf-b and Cyclin A in Cdk4R24C/R24C:Apc+/Min intestinal tumors. Together these data suggest that the dysregulated Cdk4 gene plays an important role in angiogenesis during intestinal tumor formation and may in part act via increasing E2F1 target proteins. This is the first report to show that Cdk4 has a direct role in angiogenesis in vivo and may be an important drug target to reduce or prevent angiogenesis during intestinal tumor formation.  相似文献   

11.
The Min (multiple intestinal neoplasia) mouse with a germline mutation in the adenomatous polyposis coli gene serves as an animal model for familial adenomatous polyposis coli (FAP). The number and age at onset of colorectal adenomas varies in the offspring of Min mice crossed with other strains. The murine gene for the secretory phospholipase A2 (PLA2G2A) was found to be the main candidate for these variations. To test the hypothesis of a correlation between PLA2G2A gene alterations and human tumor development, we screened 14 patients with FAP and 20 patients with sporadic colorectal cancer for germline and somatic PLA2G2A gene mutations. None of the individuals with FAP showed PLA2G2A germline alterations. However, a germline mutation was observed in one patient with an apparently sporadic colorectal tumor; the wildtype allele was somatically lost in the tumor of this patient. Received: 12 February 1997 / Accepted: 9 May 1997  相似文献   

12.
MUTYH is a DNA glycosylase that excises adenine paired with 8-oxoguanine to prevent mutagenesis in mammals. Biallelic germline mutations of MUTYH have been found in patients predisposed to a recessive form of familial adenomatous polyposis (MAP: MUTYH-associated polyposis). We previously reported that Mutyh-deficient mice showed a high susceptibility to spontaneous and oxidative stress-induced intestinal adenoma/carcinoma. Here, we performed mutation analysis of the tumor-associated genes including Apc, Ctnnb1, Kras and Trp53 in the intestinal tumors of Mutyh-deficient mice. In the 62 tumors, we identified 25 mutations in Apc of 18 tumors and 36 mutations in Ctnnb1 of 36 tumors. Altogether, 54 out of the 62 tumors (87.1%) had a mutation in either Apc or Ctnnb1; no tumor displayed mutations simultaneously in the both genes. Similar to MAP, 60 out of 61 mutations (98.3%) were identified as G:C to T:A transversions of which 85% occurred at either AGAA or TGAA sequences. Immunohistochemical analyses revealed the accumulation of β-catenin in the nuclei of tumors. No mutation was found in either Kras or Trp53 in the tumors. These results indicate that the uncontrolled activation of Wnt signaling pathway is causatively associated with oxidative stress-induced intestinal tumorigenesis in the Mutyh-deficient mice.  相似文献   

13.
Familial adenomatous polyposis (FAP) is often due to adenomatous polyposis coli (APC) gene germline mutations. Somatic APC defects are found in about 80% of colorectal cancers (CRCs) and adenomas. Rapamycin inhibits mammalian target of rapamycin (mTOR) protein, which is often expressed in human adenomas and CRCs. We sought to assess the effects of rapamycin in a mouse polyposis model in which both Apc alleles were conditionally inactivated in colon epithelium. Two days after inactivating Apc, mice were given rapamycin or vehicle in cycles of two weeks on and two weeks off. Polyps were scored endoscopically. Mice were euthanized at time points or when moribund, and tissue analyses were performed. In other studies, mice with demonstrable Apc-defective colon polyps were given rapamycin, followed by analysis of their colon tissues. The median survival of mice receiving rapamycin treatment cycles was 21.5 versus 6.5 weeks in control mice (p = 0.03), and rapamycin-treated mice had a significantly lower percentage of their colon covered with polyps (4.3+/− 2 vs 56.5+/− 10.8 percent, p = 0.001). Mice with Apc-deficient colon tissues that developed high grade dysplasia treated with rapamycin underwent treatment for significantly longer than mice treated with vehicle (15.8 vs 5.1 weeks, p = 0.003). In Apc-defective colon tissues, rapamycin treatment was linked to decreased levels of β-catenin and Sox9 at 7 weeks. Other effects of rapamycin in Apc-defectivecolon tissues included decreased proliferation and increased numbers of differentiated goblet cells at 7 weeks. Rapamycin did not affect β-catenin-regulated gene expression in cultured intestinal epithelial cells. Rapamycin has potent inhibitory effects in a mouse colon polyposis model, and mTOR inhibition is linked to decreased proliferation and increased expression of differentiation markers in Apc-mutant colon epithelium and delays development of dysplasia. Our findings highlight the possibility that mTOR inhibitors may have relevance for polyposis inhibition approaches in FAP patients.  相似文献   

14.
IL-17 plays an important role in gut homeostasis. However, the role of IL-17F in intestinal tumorigenesis has not been addressed. Here we demonstrate that ablation of IL-17F significantly inhibits spontaneous intestinal tumorigenesis in the small intestine of ApcMin/+ mice. IL-17F ablation decreased IL-1β and Cox-2 expression as well as IL-17 receptor C (IL-17RC) expression, which were increased in tumors from ApcMin/+ mice. Lack of IL-17F did not reverse the splenomegaly but partially restored thymic atrophy, suggesting a local effect of IL-17F in the intestine. IL-17F deficient ApcMin/+ mice showed a significant decrease in immune cell infiltration in the lamina propria. Interestingly, the expression of IL-17A from CD4 T cells in the lamina propria remains unchanged in the absence of IL-17F. Collectively, our results suggest the proinflammatory and essential role of IL-17F to develop spontaneous intestinal tumorigenesis in ApcMin/+ mice in the presence of IL-17A.  相似文献   

15.
Mice deficient in the Xeroderma pigmentosum group A (Xpa) gene are defective in nucleotide excision repair (NER) and highly susceptible to skin carcinogenesis after dermal exposure to UV light or chemicals. Min (multiple intestinal neoplasia) mice, heterozygous for a germline nonsense mutation in the tumor suppressor gene adenomatous polyposis coli (Apc), develop intestinal tumors spontaneously and show additional intestinal tumors after exposure to the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). In this study, we investigated the impact of loss of XPA function on PhIP-induced intestinal tumorigenesis in F1 offspring of Min/+ (Apc+/−) mice crossed with Xpa gene-deficient mice. Apc+/− mice lacking both alleles of Xpa had higher susceptibility towards toxicity of PhIP, higher levels of PhIP–DNA adducts in the middle and distal small intestines, as well as in liver, and a higher number of small intestinal tumors at 11 weeks, compared with Apc+/− mice with one or two intact Xpa alleles. Localization of tumors was not affected, being highest in middle and distal small intestines in all genotypes. At 11 weeks of age, the number of spontaneous intestinal tumors was not significantly increased by homozygous loss of Xpa, but untreated Apc+/−/Xpa−/− mice had significantly shorter life-spans than their XPA-proficient littermates. Heterozygous loss of Xpa did not affect any of the measured end points. In conclusion, the Xpa gene and the NER pathway are involved in repair of bulky PhIP–DNA adducts in the intestines and the liver, and most probably of DNA lesions leading to spontaneous intestinal tumors. These results confirm a role of the NER pathway also in protection against cancer in internal organs, additional to its well-known importance in protection against skin cancer. An effect of Apc+/− on adduct levels, additional to that of Xpa−/−, indicates that the truncated APC protein may affect a repair pathway other than NER.  相似文献   

16.
Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/β-catenin pathway, we challenged the allele combinations by genetically restricting intracellular β-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/β-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/β-catenin signaling capacity similar to that in the germline of the Apcmin mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apcmin mice arise independently of intestinal tumorigenesis. Together, the present genotype–phenotype analysis suggests tissue-specific response levels for the Wnt/β-catenin pathway that regulate both physiological and pathophysiological conditions.  相似文献   

17.
18.
Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA), a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in ApcMin/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid–supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01). Putative molecular mechanisms associated with suppressing intestinal polyposis in ApcMin/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the ApcMin/+ mice model, suggesting its chemopreventive potential against colorectal cancer.  相似文献   

19.
Constitutive β-catenin/Tcf activity, the primary transforming events in colorectal carcinoma, occurs through induction of the Wnt pathway or APC gene mutations that cause familial adenomatous polyposis. Mice carrying Apc mutations in their germ line (ApcMin) develop intestinal adenomas. Here, the crossing of ApcMin with cyclin D1−/− mice reduced the intestinal tumor number in animals genetically heterozygous or nullizygous for cyclin D1. Decreased tumor number in the duodenum, intestines, and colons of ApcMin/cyclin D1+/− mice correlated with reduced cellular proliferation and increased differentiation. Cyclin D1 deficiency reduced DNA synthesis and induced differentiation of colonic epithelial cells harboring mutant APC but not wild-type APC cells in vivo. In previous studies, the complete loss of cyclin D1 through homozygous genetic deletion conveyed breast tumor resistance. The protection of mice, genetically predisposed to intestinal tumorigenesis, through cyclin D1 heterozygosity suggests that modalities that reduce cyclin D1 abundance could provide chemoprotection.  相似文献   

20.

Background

Fas, a member of the tumor necrosis family, is responsible for initiating the apoptotic pathway when bound to its ligand, Fas-L. Defects in the Fas-mediated apoptotic pathway have been reported in colorectal cancer.

Methodology/Principal Findings

In the present study, a variant of the ApcMin/+ mouse, a model for the human condition, Familial Adenomatous Polyposis (FAP), was generated with an additional deficiency of Fas (ApcMin/+/Faslpr) by cross-breeding ApcMin/+ mice with Fas deficient (Faslpr) mice. One of the main limitations of the ApcMin/+ mouse model is that it only develops benign polyps. However, ApcMin/+/Faslpr mice presented with a dramatic increase in tumor burden relative to ApcMin/+ mice and invasive lesions at advanced ages. Proliferation and apoptosis markers revealed an increase in cellular proliferation, but negligible changes in apoptosis, while p53 increased at early ages. Fas-L was lower in ApcMin/+/Faslpr mice relative to ApcMin/+ cohorts, which resulted in enhanced inflammation.

Conclusions/Significance

This study demonstrated that imposition of a Fas deletion in an ApcMin/+ background results in a more aggressive phenotype of the ApcMin/+ mouse model, with more rapid development of invasive intestinal tumors and a decrease in Fas-L levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号