首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cowpea (Vigna unguiculata L.), peanut (Arachis hypogaea L.), and mung bean (Vigna radiata L.) belong to a group of plants known as the "cowpea miscellany" plants, which are widely cultivated throughout the tropic and subtropical zones of Africa and Asia. However, the phylogeny of the rhizobial strains that nodulate these plants is poorly understood. Previous studies have isolated a diversity of rhizobial strains from cowpea miscellany hosts and have suggested that, phylogenetically, they are from different species. In this work, the phylogeny of 42 slow-growing rhizobial strains, isolated from root nodules of cowpea, peanut, and mung bean from different geographical regions of China, was investigated using sequences from the 16S rRNA, atpD and glnII genes, and the 16S-23S rRNA intergenic spacer. The indigenous rhizobial strains from the cowpea miscellany could all be placed in the genus Bradyrhizobium , and Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense were the main species. Phylogenies derived from housekeeping genes were consistent with phylogenies generated from the ribosomal gene. Mung bean rhizobia clustered only into B. liaoningense and B. yuanmingense and were phylogenetically less diverse than cowpea and peanut rhizobia. Geographical origin was significantly reflected in the phylogeny of mung bean rhizobia. Most cowpea rhizobia were more closely related to the 3 major groups B. liaoningense, B. yuanmingense, and Bradyrhizobium elkanii than to the minor groups Bradyrhizobium japonicum or Bradyrhizobium canariense . However, most peanut rhizobia were more closely related to the 2 major groups B. liaoningense and B. yuanmingense than to the minor group B. elkanii.  相似文献   

2.
Desmodium spp. are leguminous plants belonging to the tribe Desmodieae of the subfamily Papilionoideae. They are widely distributed in temperated and subtropical regions and are used as forage plants, for biological control, and in traditional folk medicine. The genus includes pioneer species that resist the xerothermic environment and grow in arid, barren sites. Desmodium species that form nitrogen-fixing symbiosis with rhizobia play an important role in sustainable agriculture. In Argentina, 23 native species of this genus have been found, including Desmodium incanum. In this study, a total of 64 D. incanum-nodulating rhizobia were obtained from root nodules of four Argentinean plant populations. Rhizobia showed different abiotic-stress tolerances and a remarkable genetic diversity using PCR fingerprinting, with more than 30 different amplification profiles. None of the isolates were found at more than one site, thus indicating a high level of rhizobial diversity associated with D. incanum in Argentinean soils. In selected isolates, 16S rDNA sequencing and whole-cell extract MALDI TOF analysis revealed the presence of isolates related to Bradyrhizobium elkanii, Bradyrhizobium japonicum, Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense, Bradyrhizobium denitrificans and Rhizobium tropici species. In addition, the nodC gene studied in the selected isolates showed different allelic variants.Isolates were phenotypically characterized by assaying their growth under different abiotic stresses. Some of the local isolates were remarkably tolerant to high temperatures, extreme pH and salinity, which are all stressors commonly found in Argentinean soils. One of the isolates showed high tolerance to temperature and extreme pH, and produced higher aerial plant dry weights compared to other inoculated treatments. These results indicated that local isolates could be efficiently used for D. incanum inoculation.  相似文献   

3.
Indigenous rhizobia in soil present a competition barrier to the establishment of inoculant strains, possibly leading to inoculation failure. In this study, we used the natural diversity of rhizobial species and numbers in our fields to define, in quantitative terms, the relationship between indigenous rhizobial populations and inoculation response. Eight standardized inoculation trials were conducted at five well-characterized field sites on the island of Maui, Hawaii. Soil rhizobial populations ranged from 0 to over 3.5 × 104 g of soil-1 for the different legumes used. At each site, no less than four but as many as seven legume species were planted from among the following: soybean (Glycine max), lima bean (Phaseolus lunatus), cowpea (Vigna unguiculata), bush bean (Phaseolus vulgaris), peanut (Arachis hypogaea), Leucaena leucocephala, tinga pea (Lathyrus tingeatus), alfalfa (Medicago sativa), and clover (Trifolium repens). Each legume was (i) inoculated with an equal mixture of three effective strains of homologous rhizobia, (ii) fertilized at high rates with urea, or (iii) left uninoculated. For soybeans, a nonnodulating isoline was used in all trials as the rhizobia-negative control. Inoculation increased economic yield for 22 of the 29 (76%) legume species-site combinations. While the yield increase was greater than 100 kg ha-1 in all cases, in only 11 (38%) of the species-site combinations was the increase statistically significant (P ≤ 0.05). On average, inoculation increased yield by 62%. Soybean (G. max) responded to inoculation most frequently, while cowpea (V. unguiculata) failed to respond in all trials. Inoculation responses in the other legumes were site dependent. The response to inoculation and the competitive success of inoculant rhizobia were inversely related to numbers of indigenous rhizobia. As few as 50 rhizobia g of soil-1 eliminated inoculation response. When fewer than 10 indigenous rhizobia g of soil-1 were present, economic yield was significantly increased 85% of the time. Yield was significantly increased in only 6% of the observations when numbers of indigenous rhizobia were greater than 10 cells g of soil-1. A significant response to N application, significant increases in nodule parameters, and greater than 50% nodule occupancy by inoculant rhizobia did not necessarily coincide with significant inoculation responses. No less than a doubling of nodule mass and 66% nodule occupancy by inoculant rhizobia were required to significantly increase the yield of inoculated crops over that of uninoculated crops. However, lack of an inoculation response was common even when inoculum strains occupied the majority of nodules. In these trials, the symbiotic yield of crops was, on average, only 88% of the maximum yield potential, as defined by the fertilizer N treatment. The difference between the yield of N-fertilized crops and that of N2-fixing crops indicates a potential for improving inoculation technology, the N2 fixation capacity of rhizobial strains, and the efficiency of symbiosis. In this study, we show that the probability of enhancing yield with existing inoculation technology decreases dramatically with increasing numbers of indigenous rhizobia.  相似文献   

4.
The study of the nitrogen fixation and phylogenetic diversity of nodule microsymbionts of grain legumes in many parts of the globe is often carried out in order to identify legume-rhizobia combinations for agricultural sustainability. Several reports have therefore found that rhizobial species diversity is shaped by edapho-climatic conditions that characterize different geographic locations, suggesting that rhizobial communities often possess traits that aid their adaptation to their habitat. In this study, the soybean-nodulating rhizobia from semi-arid savannahs of Ghana and South Africa were evaluated. The authenticated rhizobial isolates were highly diverse based on their colony characteristics, as well as their BOX-PCR profiles and gene sequences. In the 16S rRNA phylogeny, the isolates were placed in the different clades Bradyrhizobium iriomotense and Bradyrhizobium jicamae together with two superclades Bradyrhizobium japonicum and Bradyrhizobium elkanii. The multilocus (atpD, glnII, gyrB, recA) phylogenetic analyses indicated the dominance of Bradyrhizobium diazoefficiens and putative new Bradyrhizobium species in the semi-arid Ghanaian region. The phylogenetic analyses based on the symbiotic genes (nifH and nodC) clustered the test isolates into different symbiovars (sv. glycinearum, sv. retame and sv. sojae). Principal component analysis (PCA) showed that soil factors played a significant role in favoring the occurrence of soybean-nodulating microsymbionts in the tested local conditions. The results suggested that isolates had marked local adaptation to the prevailing conditions in semi-arid regions but further studies are needed to confirm new Bradyrhizobium species.  相似文献   

5.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

6.
Moawad  H.  Badr El-Din  S.M.S.  Abdel-Aziz  R.A. 《Plant and Soil》1998,204(1):95-106
The diversity of rhizobia nodulating common bean ( Phaseolus vulgaris), berseem clover (Trifolium alexanderinum) and lentil (Lens culinaris) was assessed using several characterization techniques, including nitrogen fixation efficiency, intrinsic antibiotic-resistance patterns (IAR), plasmid profiles, serological markers and rep-PCR fingerprinting. Wide diversity among indigenous rhizobial populations of the isolates from lentil, bean and clover was found. Strikingly, a large percentage of the indigenous rhizobial population was extremely poor at fixing nitrogen. This emphasizes the need to increase the balance of highly efficient strains within the rhizobial population. Use of high-quality inocula strains that survive and compete with other less-desired and less-efficient N2-fixing rhizobia represents the best approach to increase biological nitrogen fixation of the target legume. In field-grown lentils, the inoculant strains were not able to outcompete the indigenous rhizobia and the native lentil rhizobia occupied 76–88% of the total nodules formed on inoculated plants. Nitrogen fixation by lentils, estimated using the 15N isotope dilution technique, ranged between 127 to 139 kg ha-1 in both inoculated and un-inoculated plants. With berseem clover, the inoculant strains were highly competitive against indigenous rhizobia and occupied 52–79% of all nodules. Inoculation with selected inocula improved N2 fixation by clover from 162 to 205 kg ha-1 in the three cuts as compared with 118 kg ha-1 in the un-inoculated treatment. The results also indicated the potential for improvement of N2 fixation by beans through the application of efficient N2-fixing rhizobia.  相似文献   

7.
Long-term monoculture (LTM) decreases the yield and quality of peanut, even resulting in changes in the microbial community. However, the effect of LTM on peanut rhizobial communities has still not been elucidated. In this study, we isolated and characterized peanut rhizobia from 6 sampling plots with different monoculture cropping durations. The community structure and diversity index for each sampling site were analyzed, and the correlations between a peanut rhizobium and soil characteristics were evaluated to clarify the effects on peanut rhizobial communities. The competitive abilities among representative strains were also analyzed. A total of 283 isolates were obtained from 6 sampling plots. Nineteen recA haplotypes were defined and were grouped into 8 genospecies of Bradyrhizobium, with B. liaoningense and B. ottawaense as the dominant groups in each sample. The diversity indexes of the rhizobial community decreased, and the dominant groups of B. liaoningense and B. ottawaense were enriched significantly with extended culture duration. Available potassium (AK), available phosphorus (AP), available nitrogen (AN), total nitrogen (TN) and organic carbon (OC) gradually increased with increasing monoculture duration. OC, TN, AP and AK were the main soil characteristics affecting the distribution of rhizobial genospecies in the samples. A competitive nodulation test indicated that B. liaoningense presented an excellent competitive ability, which was congruent with its high isolation frequency. This study revealed that soil characteristics and the competitive ability of rhizobia shape the symbiotic rhizobial community and provides information on community formation and the biogeographic properties of rhizobia.  相似文献   

8.
The success of rhizobial inoculation on plant roots is often limited by several factors, including environmental conditions, the number of infective cells applied, the presence of competing indigenous (native) rhizobia, and the inoculation method. Many approaches have been taken to solve the problem of inoculant competition by naturalized populations of compatible rhizobia present in soil, but so far without a satisfactory solution. We used antibiotic resistance and molecular profiles as tools to find a reliable and accurate method for competitiveness assay between introduced Bradyrhizobium sp. strains and indigenous rhizobia strains that nodulate peanut in Argentina. The positional advantage of rhizobia soil population for nodulation was assessed using a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed an increase in nodule number per plant and nodule occupancy for strains established in vermiculite. In field experiments, only 9% of total nodules were formed by bacteria inoculated by direct coating of seed, whereas 78% of nodules were formed by bacteria inoculated in the furrow at seeding. In each case, the other nodules were formed by indigenous strains or by both strains (inoculated and indigenous). These findings indicate a positional advantage of native rhizobia or in-furrow inoculated rhizobia for nodulation in peanut.  相似文献   

9.
Cowpea (Vigna unguiculata) is a promiscuous grain legume, capable of establishing efficient symbiosis with diverse symbiotic bacteria, mainly slow-growing rhizobial species belonging to the genus Bradyrhizobium. Although much research has been done on cowpea-nodulating bacteria in various countries around the world, little is known about the genetic and symbiotic diversity of indigenous cowpea rhizobia in European soils. In the present study, the genetic and symbiotic diversity of indigenous rhizobia isolated from field-grown cowpea nodules in three geographically different Greek regions were studied. Forty-five authenticated strains were subjected to a polyphasic approach. ERIC-PCR based fingerprinting analysis grouped the isolates into seven groups and representative strains of each group were further analyzed. The analysis of the rrs gene showed that the strains belong to different species of the genus Bradyrhizobium. The analysis of the 16S-23S IGS region showed that the strains from each geographic region were characterized by distinct IGS types which may represent novel phylogenetic lineages, closely related to the type species of Bradyrhizobium pachyrhizi, Bradyrhizobium ferriligni and Bradyrhizobium liaoningense. MLSA analysis of three housekeeping genes (recA, glnII, and gyrB) showed the close relatedness of our strains with B. pachyrhizi PAC48T and B. liaoningense USDA 3622T and confirmed that the B. liaoningense-related isolate VUEP21 may constitute a novel species within Bradyrhizobium. Moreover, symbiotic gene phylogenies, based on nodC and nifH genes, showed that the B. pachyrhizi-related isolates belonged to symbiovar vignae, whereas the B. liaoningense-related isolates may represent a novel symbiovar.  相似文献   

10.
The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia.  相似文献   

11.
Soybean (Glycine max) is an introduced crop in India. Over the years it has been regularly inoculated with indigenous rhizobia. In this study genetic diversity has been studied at a site where soybean has been regularly grown with inoculation. Rhizobia were plant trapped using soybean varieties as host, and fingerprinted using BOX-PCR. BOX-PCR genomic fingerprints of 69 isolates from the nodules of 4 soybean varieties Pusa22, Bragg, PK1041 and PK1142 showed a high level of genetic diversity. The population profiles of the 69 isolates clustered them into 10 groups. Root nodule isolates from the four varieties were Bradyrhizobium japonicum types, growing in 4–7 days with typical colonies which were found to be genetically distinct from the USDA and SEMIA strains of B. japonicum and B. elkanii. Also the genotype of the host plant seemed to be one of the factors determining the diversity. The high diversity could be attributed both to lateral transfer of genetic material between inoculant and indigenous strains and to genomic rearrangements during the adaptation to the Indian soils.  相似文献   

12.
Common bean (Phaseolus vulgaris L.) crops hold the potential to obtain higher yields by enhancing their biological nitrogen fixation (BNF) with Rhizobium. However in contrast to other legumes, common bean has shown a lack of positive response to inoculation with Rhizobium in many cases. This has led to a limited use of rhizobial inoculants in this crop, especially in Europe. The adaptation of bacterial strains to the rhizosphere is a key factor in the success of any inoculant, especially in a promiscuous legume such as common bean. This research aimed at increasing common bean yields via inoculation with effective indigenous Rhizobium leguminosarum strains. Three highly effective strains (LCS0306, LBM1123 and ZBM1008) which were selected according to their effectiveness at BNF in hydroponic conditions were separately inoculated onto common bean in a field experiment. The experiment was carried out under three environments and three tillage systems: conventional-tillage (CONVT), no-tillage (NT) and a cover-crop (CC). The grain yield observed with seed inoculation was significantly higher than the yield obtained with uninoculated seed under CONVT and CC. However, under NT inoculation had no effect. Furthermore, under CONVT and CC, inoculation with R. leguminosarum LCS0306 produced even higher yields than those obtained in nitrogen-fertilised or control plots. This is the first attempt to explain the inoculation performance of common bean under different tillage systems in Europe. A gene–based hypothesis has been used to explain the effectiveness of indigenous common bean rhizobia as nitrogen fixers in this crop.  相似文献   

13.
Rhizobia classified as Bradyrhizobium spp. comprise a highly heterogeneous group of bacteria that exhibit differential symbiotic characteristics on hosts in the cowpea miscellany cross-inoculation group. To delineate the degree of specificity exhibited by four legumes in the cowpea miscellany, we tested the symbiotic characteristics of indigenous cowpea bradyrhizobia on cowpea (Vigna unguiculata), siratro (Macroptilium atropurpureum), lima bean (Phaseolus lunatus), and peanut (Arachis hypogaea). The most-probable-number counts of indigenous bradyrhizobia at three sites on Maui, Hawaii, were substantially different on the four hosts: highest on siratro, intermediate on cowpea, and significantly lower on both lima bean and peanut. Bradyrhizobia from single cowpea nodules from the most-probable-number assays were inoculated onto the four hosts. Effectiveness patterns of these rhizobia on cowpea followed a normal distribution but were strikingly different on the other legumes. The effectiveness profiles on siratro and cowpea were similar but not identical. The indigenous cowpea-derived bradyrhizobia were of only moderate effectiveness on siratro and were in all cases lower than the inoculant-quality reference strain. Between 5 and 51% of the bradyrhizobia, depending on site, failed to nodulate peanut, whereas 0 to 32% failed to nodulate lima bean. No significant correlation was observed between the relative effectiveness of the bradyrhizobia on cowpea and their corresponding effectiveness on either lima bean or peanut. At all sites, bradyrhizobia that were ineffective on cowpea but that effectively nodulated lima bean, peanut, or both were found. Eighteen percent or fewer of the bradyrhizobia were as effective on lima bean as the reference inoculant strain; 44% or fewer were as effective on peanut as the reference strain. Only 18% of all cowpea-derived bradyrhizobia tested were able to form N(2)-fixing nodules on both lima bean and peanut. These results indicate the need to measure indigenous bradyrhizobial population characteristics directly with the crop of interest to obtain an accurate assessment of the need to inoculate.  相似文献   

14.
Chamaecrista mimosoides is an annual herb legume widely distributed in tropical and subtropical Asia and Africa. It may have primitive and independently-evolved root nodule types but its rhizobia have not been systematically studied. Therefore, in order to learn the diversity and species affinity of its rhizobia, root nodules were sampled from C. mimosoides plants growing in seven geographical sites along the coast line of Shandong Peninsula, China. A total of 422 rhizobial isolates were obtained from nodules, and they were classified into 28 recA haplotypes. By using multilocus sequence analysis of the concatenated housekeeping genes dnaK, glnII, gyrB, recA and rpoB, the representative strains for these haplotypes were designated as eight defined and five candidate novel genospecies in the genus Bradyrhizobium. Bradyrhizobium elkanii and Bradyrhizobium ferriligni were predominant and universally distributed. The symbiotic genes nodC and nifH of the representative strains showed very similar topology in their phylogenetic trees indicating their co-evolution history. All the representative strains formed effective root nodules in nodulation tests. The correlation between genospecies and soil characteristics analyzed by CANOCO software indicated that available potassium (AK), organic carbon (OC) and available nitrogen (AN) in the soil samples were the main factors affecting the distribution of the symbionts involved in this current study. The study is the first systematic survey of Chamaecrista mimosoides-nodulating rhizobia, and it showed that Chamaecrista spp. were nodulated by bradyrhizobia in natural environments. In addition, the host spectrum of the corresponding rhizobial species was extended, and the study provided novel information on the biodiversity and biogeography of rhizobia.  相似文献   

15.
One hundred isolates were trapped by soybean (Glycine max) plants inoculated with a soil from the Cerrados, the main producing area in Brazil. The soil was originally void of rhizobia able to nodulate soybean, and 15 years before received inoculant containing Bradyrhizobium elkanii strains SEMIA 587 and SEMIA 5019; the area has been annually cropped with soybean since then, but with no further inoculation for the past 7 years. Enormous diversity was observed among the isolates, with thirteen serologically distinct groups, twelve protein and seven lipopolysaccharide profiles; no more than five isolates shared similar characteristics. An unexpected feature was that 48% of the isolates showed multiple reactions with the antisera to the serogroups established in the soils. Also 40% of the isolates reacted with the antiserum to B. japonicum strain SEMIA 566, that has never been introduced into the soil, probably due to dispersion from other cropping areas, associated with its high saprophytic competence; 13% of the isolates did not react with any of the antisera. Nodulation and N2 fixation capacity also varied considerably among the isolates. Although one third of the isolates were fast growers with an acid reaction in vitro, and many formed pseudo-nodules on common bean (Phaseolus vulgaris), they shared several properties with the Bradyrhizobium inoculant strains. A high level of genetic diversity was confirmed when the DNAs were amplified with BOX and RPO1 primers, and several isolates were positioned in far different clusters in the analysis of interspersed repetitive or nif-directed sequences. Moreover, serological properties showed higher correlation with BOX than with RPO1 products. The high diversity could be attributed both to lateral transfer of genetic material between inoculant and indigenous strains and to genomic rearrangements during the adaptation to the Cerrados, and may play an important role as a biological buffer, avoiding the dominance of a particular strain.  相似文献   

16.

Background and aims

Inoculation of legumes at sowing with rhizobia has arguably been one of the most cost-effective practices in modern agriculture. Critical aspects of inoculant quality are rhizobial counts at manufacture/registration and shelf (product) life.

Methods

In order to re-evaluate the Australian standards for peat-based inoculants, we assessed numbers of rhizobia (rhizobial counts) and presence of contaminants in 1,234 individual packets of peat–based inoculants from 13 different inoculant groups that were either freshly manufactured or had been stored at 4 °C for up to 38 months to determine (a) rates of decline of rhizobial populations, and (b) effects of presence of contaminants on rhizobial populations. We also assessed effects of inoculant age on survival of the rhizobia during and immediately after inoculation of polyethylene beads.

Results

Rhizobial populations in the peat inoculants at manufacture and decline rates varied substantially amongst the 13 inoculant groups. The most stable were Sinorhizobium, Bradyrhizobium and Mesorhizobium with Rhizobium, particularly R. leguminosarum bv. trifolii the least stable. The presence of contaminants at the 10?6 level of dilution, i.e. >log 6.7 g?1 peat, reduced rhizobial numbers in the stored inoculants by an average of 37 %. Survival on beads following inoculation improved 2–3 fold with increasing age of inoculant.

Conclusions

We concluded that the Australian standards for peat-based rhizobial inoculants should be reassessed to account for the large differences amongst the groups in counts at manufacture and survival rates during storage. Key recommendations are to increase expiry counts from log 8.0 to log 8.7 rhizobia g?1 peat and to have four levels of inoculant shelf life ranging from 12 months to 3 years.  相似文献   

17.
To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia.  相似文献   

18.
Common bean [Phaseolus vulgaris (Linnaeus)] is the key source of protein, carbohydrates and micronutrients for over 300 million people in the tropics. Like many legumes, P. vulgaris can fix atmospheric nitrogen in symbiosis with rhizobia, alleviating the need for the expensive and polluting N-fertilizers. The crop is known to nodulate with a wide range of rhizobia and, although Brazil is not a center of genetic origin/domestication of P. vulgaris, a variety of rhizobial species have been found as symbionts of the legume. Mato Grosso do Sul (MS) is one of the largest common bean producer states in Brazil, with reports of high yields and abundant natural nodulation. The objective of this study was to evaluate the diversity of 73 indigenous rhizobia isolated from common bean grown in 22 municipalities of MS. Great morphophysiological and genetic diversity was found, as indicated by the six and 35 clusters formed, considering the similarity level of 75 and 70%, respectively, for the phenotypic and rep-PCR dendrograms. Eleven representative isolates were selected for detailed genetic characterization using 16S rRNA and three protein-coding housekeeping genes, glnII, gyrB and recA. We identified species originated from the centers of origin/domestication of the legume, R. etli and R. phaseoli, species probably indigenous of Brazil, R. leucaenae and others of the Rhizobium/Agrobacterium clade, in addition to putative new species. The results highlight the great rhizobial diversity of the region.  相似文献   

19.
Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.  相似文献   

20.
Low-molecular-weight (LMW) RNA molecules were analyzed to characterize rhizobial isolates that nodulate the common bean growing in Spain. Since LMW RNA profiles, determined by staircase electrophoresis, varied across the rhizobial species nodulating beans, we demonstrated that bean isolates recovered from Spanish soils presumptively could be characterized as Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum bv. viciae and bv. trifolii, and Sinorhizobium fredii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号