首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rhizobacterial community, associated with the roots of wild thistle Cirsium arvense (L.) growing in an arsenic polluted soil, was studied by fluorescence in situ hybridization (FISH) analysis in conjunction with cultivation-based methods. In the bulk, rhizosphere, and rhizoplane fractions of the soil, the qualitative picture obtained by FISH analysis of the main phylogenetic bacterial groups was similar and was predominantly comprised of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The arsenic-resistant isolates belonged to 13 genera, the most abundant being those of Bacillus, Achromobacter, Brevundimonas, Microbacterium, and Ochrobactrum. Most bacteria grew in the presence of high arsenic concentrations (over 100 mM arsenate and 10 mM arsenite). Most strains possessed the ArsC, ArsB and ACR3 genes homologous to arsenate reductase and to the two classes of arsenite efflux pumps, respectively, peculiar to the ars operon of the arsenic detoxification system. ArsB and ACR3 were present simultaneously in highly resistant strains. An inconsistency between 16S rRNA phylogenetic affiliations and the arsenate reductase sequences of the strains was observed, indicating possible horizontal transfer of arsenic resistance genes in the soil bacterial community. Several isolates were able to reduce arsenate and to oxidise arsenite. In particular, Ancylobacter dichloromethanicum strain As3-1b possessed both characteristics, and arsenite oxidation occurred in the strain also under chemoautotrophic conditions. Some rhizobacteria produced siderophores, indole acetic acid and 1-amino-cyclopropane-1-carboxylic acid deaminase, thus possessing potential plant growth-promoting traits.  相似文献   

2.
? Arsenic contamination has a negative impact on crop cultivation and on human health. As yet, no proteins have been identified in plants that mediate the extrusion of arsenic. Here, we heterologously expressed the yeast (Saccharomyces cerevisiae) arsenite efflux transporter ACR3 into Arabidopsis to evaluate how this affects plant tolerance and tissue arsenic contents. ? ACR3 was cloned from yeast and transformed into wild-type and nip7;1 Arabidopsis. Arsenic tolerance was determined at the cellular level using vitality stains in protoplasts, in intact seedlings grown on agar plates and in mature plants grown hydroponically. Arsenic efflux was measured from protoplasts and from intact plants, and arsenic levels were measured in roots and shoots of plants exposed to arsenate. ? At the cellular level, all transgenic lines showed increased tolerance to arsenite and arsenate and a greater capacity for arsenate efflux. With intact plants, three of four stably transformed lines showed improved growth, whereas only transgenic lines in the wild-type background showed increased efflux of arsenite into the external medium. The presence of ACR3 hardly affected tissue arsenic levels, but increased arsenic translocation to the shoot. ? Heterologous expression of yeast ACR3 endows plants with greater arsenic resistance, but does not lower significantly arsenic tissue levels.  相似文献   

3.
4.
In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg?1). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.  相似文献   

5.
Rapid reduction of arsenate in the medium mediated by plant roots   总被引:9,自引:1,他引:8  
Microbes detoxify arsenate by reduction and efflux of arsenite. Plants have a high capacity to reduce arsenate, but arsenic efflux has not been reported. Tomato (Lycopersicon esculentum) and rice (Oryza sativa) were grown hydroponically and supplied with 10 microm arsenate or arsenite, with or without phosphate, for 1-3 d. The chemical species of As in nutrient solutions, roots and xylem sap were monitored, roles of microbes and root exudates in As transformation were investigated and efflux of As species from tomato roots was determined. Arsenite remained stable in the nutrient solution, whereas arsenate was rapidly reduced to arsenite. Microbes and root exudates contributed little to the reduction of external arsenate. Arsenite was the predominant species in roots and xylem sap. Phosphate inhibited arsenate uptake and the appearance of arsenite in the nutrient solution, but the reduction was near complete in 24 h in both -P- and +P-treated tomato. Phosphate had a greater effect in rice than tomato. Efflux of both arsenite and arsenate was observed; the former was inhibited and the latter enhanced by the metabolic inhibitor carbonylcyanide m-chlorophenylhydrazone. Tomato and rice roots rapidly reduce arsenate to arsenite, some of which is actively effluxed to the medium. The study reveals a new aspect of As metabolism in plants.  相似文献   

6.
7.
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.  相似文献   

8.
Huang Y  Hatayama M  Inoue C 《Planta》2011,234(6):1275-1284
In some plant species, various arsenic (As) species have been reported to efflux from the roots. However, the details of As efflux by the As hyperaccumulator Pteris vittata remain unknown. In this study, root As efflux was investigated for different phosphorus (P) supply conditions during or after a 24-h arsenate uptake experiment under hydroponic growth conditions. During an 8-h arsenate uptake experiment, P-supplied (P+) P. vittata exhibited much greater arsenite efflux relative to arsenate uptake when compared with P-deprived (P–) P. vittata, indicating that arsenite efflux was not proportional to arsenate uptake. In the As efflux experiment following 24 h of arsenate uptake, arsenate efflux was also observed with arsenite efflux in the external solution. All the results showed relatively low rates of arsenate efflux, ranging from 5.4 to 16.1% of the previously absorbed As, indicating that a low rate of arsenate efflux to the external solution is also a characteristic of P. vittata, as was reported with arsenite efflux. In conclusion, after 24 h of arsenate uptake, both P+ and P– P. vittata loaded/effluxed similar amounts of arsenite to the fronds and the external solution, indicating a similar process of xylem loading and efflux for arsenite, with the order of the arsenite concentrations being solution ≪ roots ≪ fronds.  相似文献   

9.
Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.  相似文献   

10.
11.
12.
A highly arsenic-metabolizing bacterial strain was isolated from an agricultural field known for arsenic contamination near Munshiganj (Bangladesh). Based on 16S rRNA gene analysis, the strain was identified as Micrococcus luteus and designated as strain BPB1. Arsenate and arsenite minimal inhibitory concentrations of 650 mM and 7.5 mM, respectively, were observed for strain BPB1, slightly higher than the figures observed in its close relative M. luteus DSM 20030T. Such observations were consistent with the presence of arsenic-metabolizing genes in the genome of M. luteus. We describe this strain as having an MSH/Mrx-dependent class of arsenate reductase, and an arsenite transporter family in the ACR3(1) group. Besides an intracellular arsenic resistance mechanism, experiments carried out using field emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FESEM-EDS) and Fourier transform infrared spectroscopy (FTIR) demonstrated the ability of BPB1 to sequester arsenate in extracellular polymeric substances on its cell surface.  相似文献   

13.
S Brer  G Ji  A Brer    S Silver 《Journal of bacteriology》1993,175(11):3480-3485
The arsenic resistance operon of Staphylococcus aureus plasmid pI258 determined lowered net cellular uptake of 73As by an active efflux mechanism. Arsenite was exported from the cells; intracellular arsenate was first reduced to arsenite and then transported out of the cells. Resistant cells showed lower accumulation of 73As originating from both arsenate and arsenite. Active efflux from cells loaded with arsenite required the presence of the plasmid-determined arsB gene. Efflux of arsenic originating as arsenate required the presence of the arsC gene and occurred more rapidly with the addition of arsB. Inhibitor studies with S. aureus loaded with arsenite showed that arsenite efflux was energy dependent and appeared to be driven by the membrane potential. With cells loaded with 73AsO4(3-), a requirement for ATP for energy was observed, leading to the conclusion that ATP was required for arsenate reduction. When the staphylococcal arsenic resistance determinant was cloned into Escherichia coli, lowered accumulation of arsenate and arsenite and 73As efflux from cells loaded with arsenate were also found. Cloning of the E. coli plasmid R773 arsA gene (the determinant of the arsenite-dependent ATPase) in trans to the S. aureus gene arsB resulted in increased resistance to arsenite.  相似文献   

14.
The ars gene system provides arsenic resistance to a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. Therefore, arsC gene from Bacillus cereus strain AG27 isolated from soil was amplified, cloned and sequenced. The strain exhibited a minimum inhibitory concentration of 40 and 35 mM to sodium arsenate and sodium arsenite, respectively. Homology of the sequence, when compared with available database using BLASTn search showed that 300 bp amplicons obtained possess partial arsC gene sequence which codes for arsenate reductase, an enzyme involved in the reduction of arsenate to arsenite which is then effluxed out of the cell, thereby indicating the presence of efflux mechanism of resistance in strain. The efflux mechanism was further confirmed by atomic absorption spectroscopy and scanning electron microscopy studies. Moreover, three dimensional structure of modeled arsC from Bacillus cereus strain shares significant structural similarity with arsenate reductase protein of B.subtilis, consisting of, highly similar overall fold with single α/β domain containing a central four stranded, parallel, open-twisted β-sheet flanked by α-helices on both sides. The structure harbors the arsenic binding motif AB loop or P-loop that is highly conserved in arsenate reductase family.  相似文献   

15.
A Pseudomonas isolate, designated PAHAs-1, was found capable of reducing arsenate and degrading polycyclic aromatic hydrocarbons (PAHs) independently and simultaneously. This isolate completely reduced 1.5 mM arsenate within 48 h and removed approximately 100% and 50% of 60 mg l−1 phenanthrene and 20 mg l−1 pyrene within 60 h, respectively. Using PAHs as the sole carbon source, however, this isolate showed a slow arsenate reduction rate (4.62 μM h−1). The presence of arsenic affected cell growth and concurrent PAHs removal, depending on PAH species and arsenic concentration. Adding sodium lactate to the medium greatly enhanced the arsenate reduction and pyrene metabolism. The presence of the alpha subunit of the aromatic ring-hydroxylating dioxygenase (ARHD) gene, arsenate reductase (arsC) and arsenite transporter (ACR3(2)) genes supported the dual function of the isolate. The finding of latter two genes indicated that PAHAs-1 possibly reduced arsenate via the known detoxification mechanism. Preliminary data from hydroponic experiment showed that PAHAs-1 degraded the majority of phenanthrene (>60%) and enhanced arsenic uptake by Pteris vittata L. (from 246.7 to 1187.4 mg kg−1 As in the fronds). The versatile isolate PAHAs-1 may have potentials in improving the bioremediation of PAHs and arsenic co-contamination using the plant-microbe integrated strategy.  相似文献   

16.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

17.
18.
Many plant species are able to reduce arsenate to arsenite efficiently, which is an important step allowing detoxification of As through either efflux of arsenite or complexation with thiol compounds. It has been suggested that this reduction is catalyzed by ACR2, a plant homologue of the yeast arsenate reductase ScACR2. Silencing of AtACR2 was reported to result in As hyperaccumulation in the shoots of Arabidopsis thaliana. However, no information of the in vivo As speciation has been reported. Here, we investigated the effect of AtACR2 knockout or overexpression on As speciation, arsenite efflux from roots and As accumulation in shoots. T-DNA insertion lines, overexpression lines and wild-type (WT) plants were exposed to different concentrations of arsenate for different periods, and As speciation in plants and arsenite efflux were determined using HPLC-ICP-MS. There were no significant differences in As speciation between different lines, with arsenite accounting for >90% of the total extractable As in both roots and shoots. Arsenite efflux to the external medium represented on average 77% of the arsenate taken up during 6 h exposure, but there were no significant differences between WT and mutants or overexpression lines. Accumulation of As in the shoots was also unaffected by AtACR2 knockout or overexpression. Additionally, after exposure to arsenate, the yeast (Saccharomyces cerevisiae) strain with ScACR2 deleted showed similar As speciation as the WT with arsenite-thiol complexes being the predominant species. Our results suggest the existence of multiple pathways of arsenate reduction in plants and yeast.  相似文献   

19.
20.
The marine phytoplanktonic algae, Tetraselmis chui Stein and Hymenomonas carterae (Braarud and Fagerland) Braarud, were grown in media containing various concentrations of arsenate or arsenite. The effects of arsenic on the algae varied with the oxidation state of the element, its concentration, and the degree of illumination. Arsenate affected mainly algal growth but also cell morphology, whereas arsenite caused only morphological changes. Studies on the incorporation of 74As-arsenate into cells grown in artificial sea water indicated that arsenate was incorporated and later partially released by both T. chui and H. carterae. Both arsenate influx and efflux seemed to be energy-dependent phenomena, because they varied with the degree of illumination. Differences between the rates of uptake and release of arsenic suggested that arsenate undergoes chemical changes after having been transported into the algal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号