首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transporter associated with antigen processing (TAP) translocates the cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen where they complex with nascent human leukocyte antigen (HLA) class I molecules. Non-functional TAP complexes and viral or tumoral blocking of these transporters leads to reduced HLA class I surface expression and a drastic change in the available peptide repertoire. Using mass spectrometry to analyze complex human leukocyte antigen HLA-bound peptide pools isolated from large numbers of TAP-deficient cells, we identified 334 TAP-independent ligands naturally presented by four different HLA-A, -B, and -C class I molecules with very different TAP dependency from the same cell line. The repertoire of TAP-independent peptides examined favored increased peptide lengths and a lack of strict binding motifs for all four HLA class I molecules studied. The TAP-independent peptidome arose from 182 parental proteins, the majority of which yielded one HLA ligand. In contrast, TAP-independent antigen processing of very few cellular proteins generated multiple HLA ligands. Comparison between TAP-independent peptidome and proteome of several subcellular locations suggests that the secretory vesicle-like organelles could be a relevant source of parental proteins for TAP-independent HLA ligands. Finally, a predominant endoproteolytic peptidase specificity for Arg/Lys or Leu/Phe residues in the P1 position of the scissile bond was found for the TAP-independent ligands. These data draw a new and intricate picture of TAP-independent pathways.  相似文献   

2.
T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses.  相似文献   

3.
The aim of the present study was to identify influenza A-derived peptides which bind to both HLA class I and -II molecules and by immunization lead to both HLA class I and class II restricted immune responses. Eight influenza A-derived 9-11mer peptides with simultaneous binding to both HLA-A*02:01 and HLA-DRB1*01:01 molecules were identified by bioinformatics and biochemical technology. Immunization of transgenic HLA-A*02:01/HLA-DRB1*01:01 mice with four of these double binding peptides gave rise to both HLA class I and class II restricted responses by CD8 and CD4 T cells, respectively, whereas four of the double binding peptides did result in HLA-A*02:01 restricted responses only. According to their cytokine profile, the CD4 T cell responses were of the Th2 type. In influenza infected mice, we were unable to detect natural processing in vivo of the double restricted peptides and in line with this, peptide vaccination did not decrease virus titres in the lungs of intranasally influenza challenged mice. Our data show that HLA class I and class II double binding peptides can be identified by bioinformatics and biochemical technology. By immunization, double binding peptides can give rise to both HLA class I and class I restricted responses, a quality which might be of potential interest for peptide-based vaccine development.  相似文献   

4.
5.
Nef-specific CD8+ T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165–173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef''s major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication.  相似文献   

6.
The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.  相似文献   

7.
Direct cellular entry of potentially useful polar compounds into cells is prevented by the hydrophobic barrier of the membrane. Toward circumventing this barrier, we used high throughput screening to identify a family of peptides that carry membrane-impermeant cargos across synthetic membranes. Here we characterize the plasma membrane translocation of these peptides with polar cargos under a variety of conditions. The spontaneous membrane-translocating peptides (SMTPs) delivered the zwitterionic, membrane-impermeant dye tetramethylrhodamine (TAMRA) into cells even when the conditions were not permissive for endocytosis. They also delivered the larger, anionic membrane-impermeant dye Alexa Fluor 546 but did not deliver a quantum dot nanoparticle. Under all conditions, the SMTP-cargo filled the cytoplasm with a diffuse, non-punctate fluorescence that was partially excluded from the nucleus. d-Amino acid peptides behaved identically in vitro, ruling out proteolysis as an important factor in the diffuse cellular distribution. Thus, cytosolic delivery of SMTP-cargo conjugates is dominated by direct membrane translocation. This is in sharp contrast to Arg9-TAMRA, a representative highly cationic, cell-penetrating peptide, which entered cells only when endocytosis was permitted. Arg9-TAMRA triggered large scale endocytosis and did not appreciably escape the endosomal compartments in the 1-h timescales we studied. When injected into mice, SMTP-TAMRA conjugates were found in many tissues even after 2 h. Unconjugated TAMRA was rapidly cleared and did not become systemically distributed. SMTPs are a platform that could improve delivery of many polar compounds to cells, in the laboratory or in the clinic, including those that would otherwise be rejected as drugs because they are membrane-impermeant.  相似文献   

8.
9.
The highly polymorphic Human Leukocyte Antigen system encompasses different loci that have been studied in transplantation as well as diseases and population associated research. This study is the first and largest of its kind to describe the distribution of HLA-A, -B and -C alleles in Lebanon. Respectively, 1994, 1309 and 1163 Lebanese individuals referred for HLA typing and possible bone marrow/kidney donation were tested for HLA-A, HLA-B and HLA-C alleles using the polymerase chain reaction/Sequence specific priming (PCR-SSP) method. Our data were compared to that of several populations with interesting and common findings shared with the Moroccan, Jordanian, Tunisian, Omani, Korean, Chinese, Japanese, Peruan, Bulgarian, Irish, Polish, Spanish, Swiss, American, African and Brazilian populations. The following data concerning the Lebanese population will help future investigators to study the relation of HLA-A, -B and -C alleles with common diseases in Lebanon and will add to the available international literature. This new data will serve as a major reference report in the region.  相似文献   

10.
The role of HLA Class I antigens in T cell proliferation was investigated by using the anti-HLA Class I monoclonal antibodies (MoAb) CR10-215, CR10-325, and CR11-115. MoAb CR10-215 and CR11-115 recognize the same (or spatially close) monomorphic determinant, which is distinct and spatially distant from that reacting with MoAb CR10-325. Addition of MoAb CR10-215 and CR11-115 to cultures of peripheral blood mononuclear cells stimulated with MoAb OKT3, MoAb Pan T2, PHA, or PPD inhibited cell proliferation. The blocking is specific in that the anti-HLA Class I MoAb CR10-325 and the Pan T MoAb Pan T1 had no effect on the proliferation. The inhibitory activity of MoAb CR10-215 and CR11-115 does not reflect i) toxic effects, ii) induction of suppressor cells and factors, iii) blocking of the binding of mitogens to lymphocytes, iv) inhibition of the production of interleukin 1 (IL 1) and interleukin 2 (IL 2), or v) function of IL 2 receptor. Anti-HLA Class I MoAb were able to inhibit the proliferation of purified, Tac-, T cells. The inhibited cells did not express Tac antigen, as assayed by direct immunofluorescence, with MoAb anti-Tac, but released a normal amount of IL 2 in culture medium. These results indicate that monomorphic determinants of the HLA Class I complex are involved in the regulation of T cell proliferation. The effect appears to occur at the level of IL 2 receptor expression.  相似文献   

11.
MELOE-1 is an overexpressed melanoma antigen containing a HLA-A2 restricted epitope, involved in melanoma immunosurveillance of patients adoptively transferred with tumour infiltrating lymphocytes (TIL). The use of the full-length antigen (46 aa) for anti-melanoma vaccination could be considered, subject to the presence of Th epitopes all along MELOE-1 sequence. Thus, in this study we evaluated in vitro the immunoprevalence of the different regions of MELOE-1 (i.e. their ability to induce CD4 T cell responses in vitro from PBMC). Stimulation of PBMC from healthy subjects with MELOE-1 induced the amplification of CD4 T cells specific for various regions of the protein in multiple HLA contexts, for each tested donor. We confirmed these results in a panel of melanoma patients, and documented that MELOE-1 specific CD4 T cells, were mainly Th1 cells, presumably favourable to the amplification of CD8 specific T cells. Using autologous DC, we further showed that these class II epitopes could be naturally processed from MELOE-1 whole protein and identified minimal epitopes derived from each region of MELOE-1, and presented in four distinct HLA contexts. In conclusion, vaccination with MELOE-1 whole polypeptide should induce specific Th1 CD4 responses in a majority of melanoma patients, stimulating the amplification of CD8 effector cells, reactive against melanoma cells.  相似文献   

12.
Japanese encephalitis is a major threat in developing countries, even the availability of several conventional vaccines, which demand development of more effective vaccines. The present study used propred I and Immune Epitope Database Artificial Neural Network (ANN) algorithm (IEDB-ANN) to identify the conserve and promiscuous T cell epitopes from JEV proteome followed by structure based analysis of potential epitopes. Among all identified 102 epitopes, ten epitope were promiscuous but two epitopes of glycoprotein viz. 55LVTVNPFVA63 and 38IPIVSVASL46 were found most promiscuous, highly conserved and high population coverage in comparison of known antigenic positive control peptides. The B cell epitopes of glycoprotein also share these two T cell epitopes revealed by BCPred algorithm which can be a basis to confer the protection by neutralizing antibody combined with an effective cell-mediated response. Further, Autodock 4.2 and NAMD–VMD molecular dynamics simulation were used for docking and molecular dynamics simulation respectively, to validate epitope and allele complex binding stability. The 3D structure models were generated for epitopes and corresponding HLA allele by Pepstr and Modeller 9.10 respectively. Epitope LVTVNPFVA–B5101 allele complex showed best energy minimization and stability over the time window during simulation. Here we also present the binding sequel of epitope LVTVNPFVA and its eventual transport through cTAP1 (PDB ID: 1JJ7) revealed by Autodock 4.2, which is an essential path for HLA class I binding epitopes to elicit immune response. The docking experiment of epitope LVTVNPFVA and cTAP1 very well show a 2 H-bond with a binding energy of ?1.88 kcal/mol and other binding state of epitope forming no H-bond with a binding energy of ?1.13 kcal/mol in the lower area of cTAP1 cavity. These results show a smooth pass through of the epitope across the channel of cTAP1. Overall, identified peptides have potential application in the design and development of short peptide based vaccines and diagnostic agents for Japanese encephalitis.  相似文献   

13.
Cytotoxic T lymphocyte (CTL)-mediated death of virus-infected cells requires prior recognition of short viral peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on the surface of infected cells. The CTL response is critical for the clearance of human respiratory syncytial virus (HRSV) infection. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HRSV-infected cells, we identified nine naturally processed HLA-B27 ligands. The isolated peptides are derived from six internal, not envelope, proteins of the infective virus. The sequences of most of these ligands are not conserved between different HRSV strains, suggesting a mechanism to explain recurrent infection with virus of different HRSV antigenic subgroups. In addition, these nine ligands represent a significant fraction of the proteome of this virus, which is monitored by the same HLA class I allele. These data have implications for vaccine development as well as for analysis of the CTL response.The recognition of short viral peptides associated with human histocompatibility complex (human leukocyte antigen (HLA)1) class I molecules on the cell surface allows cytotoxic T lymphocytes (CTLs) to recognize and kill virus-infected cells (1). These peptides are generated by proteolytic processing of newly synthesized viral proteins in the cytosol by the combined action of proteasomes, ERAAP (endoplasmic reticulum aminopeptidase associated with antigen processing), and in some cases other peptidases (2). This degradation of viral proteins generates peptides of 8–11 residues that are translocated to the endoplasmic reticulum lumen by transporters associated with antigen processing. These short peptides then assemble with the HLA class I heavy chain and β2-microglobulin. Usually, two major anchor residues in the antigenic peptide, at position 2 and the C terminus (3, 4), must be deeply accommodated into specific pockets of the antigen recognition site of the HLA class I molecule to stabilize the nascent complexes (5, 6) and allow for their subsequent transport to the cell membrane where they are exposed for CTL recognition (7).Human respiratory syncytial virus (HRSV) (8), a member of the Paramyxoviridae family, is the single most important cause of bronchiolitis and pneumonia in infants and young children (911). Infections of this virus occur in people of all ages, but although usually mild infections are reported in healthy adults, HRSV poses a serious health risk in immunocompromised individuals (12, 13) and in the elderly (14, 15). The single-stranded, negative-sense RNA genome of this enveloped virus codes for 11 proteins.Although the immune mechanism involved in HRSV disease and protection is not well understood, specific CD8+ T lymphocytes are required for the clearance of virus-infected cells (16). Previously, several HRSV epitopes restricted by different HLA class I molecules were identified using CTLs from seropositive individuals (1721). However, these experiments were performed with synthetic peptides against individual proteins. In contrast, only one published study attempted to elucidate the nature and diversity of the possible array of HRSV ligands restricted by individual HLA molecules (22). In this study, virus-infected cells were cultured with stable, isotope-labeled amino acids, which were expected to act as anchor residues for the HLA allele of interest. The MHC molecules were then immunoprecipitated, and mass spectrometry analysis was performed. This study identified one HRSV ligand for each of the HLA-A2 and -B7 class I molecules (22). Therefore, is only one HRSV ligand restricted by a single HLA molecule exposed on the cell membrane surface as suggested by this study? Conversely, could a particular HLA molecule bind several ligands of this small virus simultaneously? To answer these questions, we compared HLA-B27 ligands isolated from large amounts of healthy or HRSV-infected cells without any methodological bias (selection of individual protein, use of HLA consensus scoring algorithms, etc.). This analysis demonstrated the existence of diverse, naturally processed HLA-B27 ligands from six different HRSV proteins in infected cells.  相似文献   

14.
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.  相似文献   

15.
16.
Although CD8+ cytotoxic T lymphocytes (CTLs) are protective in HIV-1 infection, the factors determining their antiviral efficiency are poorly defined. It is proposed that Gag targeting is superior because of very early Gag epitope presentation, allowing early killing of infected cells before Nef-mediated downregulation of human leukocyte antigen class I (HLA-I). To study Gag epitope presentation kinetics, three epitopes (SL977-85, KF11162-172, and TW10240-249) were genetically translocated from their endogenous location in the Rev-dependent (late) gag gene into the Rev-independent (early) nef gene with concomitant mutation of the corresponding endogenous epitopes to nonrecognized sequences. These viruses were compared to the index virus for CTL-mediated suppression of replication and the susceptibility of this antiviral activity to Nef-mediated HLA-I downregulation. SL9-specific CTLs gained activity after SL9 translocation to Nef, going from Nef sensitive to Nef insensitive, indicating that translocation accelerated infected cell recognition from after to before HLA-I downregulation. KF11-specific CTL antiviral activity was unchanged and insensitive to HLA-I downregulation before and after KF11 translocation, suggesting that already rapid recognition of infected cells was not accelerated. However, TW10-specific CTLs that were insensitive to Nef at the baseline became sensitive with reduced antiviral activity after translocation, indicating that translocation retarded epitope expression. Cytosolic peptide processing assays suggested that TW10 was inefficiently generated after translocation to Nef, compared to SL9 and KF11. As a whole, these data demonstrate that epitope presentation kinetics play an important role in CTL antiviral efficiency, that Gag epitopes are not uniformly presented early, and that the epitope context can play a major role in presentation kinetics.  相似文献   

17.
Although loss of HLA expression by malignant cells has also been demonstrated, it has not been clarified how the loss of HLA expression observed in vitro actually results in immune escape. We demonstrated two major findings: (i) a part of chromosome 6 coding for HLA haplotypes was deleted from the genome of chondrosarcoma cell line, OUMS-27; furthermore, immunohistostaining for HLA-A11 showed that the original chondrosarcoma tissue lost the expression of HLA-A11, implicating that HLA haplotype loss was already present in the original tumor tissue and (2) HLA class I-restricted and autologous tumor-specific cytotoxic T cells (CTL) were generated from peripheral blood lymphocytes of the patient with chondrosarcoma, from whom OUMS-27 originated. This CTL line was maintained by weekly stimulation with OUMS-27, and lysed OUMS-27 in an HLA-A24 dependent manner but did not either K562 or autologous (EBV)-transformed B cells. These observations indicated that OUMS-27 and its original tumor are still immunogenic and can present antigen peptides with the remaining HLA-A24, even if HLA expression is partially lost. Tumor specific immunotherapy can be applied to the treatment of malignancies, even if HLA expression is partially lost.  相似文献   

18.
19.
Regulation of HLA class I transcription in T cells   总被引:2,自引:0,他引:2  
  相似文献   

20.
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii cells, we generated MHC II vaccines to activate cancer patients'' T cells. The vaccines are Ii tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.Cancer vaccines are a promising tool for cancer treatment and prevention because of their potential for inducing tumor-specific responses in conjunction with minimal toxicity for healthy cells. Cancer vaccines are based on the concept that tumor cells synthesize multiple peptides that are potential immunogens, and that with the appropriate vaccine protocol, these peptides will activate an efficacious antitumor response in the patient. Much effort has been invested in identifying and testing tumor-encoded peptides, particularly peptides presented by major histocompatibility complex (MHC)1 class I, molecules capable of activating CD8+ T-cells that directly kill tumor cells (1, 2). Fewer studies have been devoted to identifying MHC class II-restricted peptides for the activation of tumor-reactive CD4+ T-cells despite compelling evidence that Type 1 CD4+ T helper cells facilitate the optimal activation of CD8+ T-cells and the generation of immune memory, which is likely to be essential for protection from metastatic disease.Activation of CD4+ T cells requires delivery of a costimulatory signal plus an antigen-specific signal consisting of peptide bound to an MHC II molecule. Most cells do not express MHC II or costimulatory molecules, so CD4+ T cells are typically activated by professional antigen presenting cells (APC), which endocytose exogenously synthesized antigen and process and present it in the context of their own MHC II molecules. This processing and presentation process requires Invariant chain (Ii), a molecule that is coordinately synthesized with MHC II molecules and prevents the binding and presentation of APC-encoded endogenous peptides (3, 4). As a result, tumor-reactive CD4+ T cells are activated to tumor peptides generated by the antigen processing machinery of professional APC, rather than peptides generated by the tumor cells. Because of the potential discrepancy in peptide generation between professional APC and tumor cells, and the critical role of Ii in preventing the presentation of endogenous peptides, we have generated “MHC II cancer vaccines” that consist of Ii tumor cells transfected with syngeneic MHC class II and CD80 genes. We reasoned that MHC II+IiCD80+ tumor cells may present a novel repertoire of MHC II-restricted tumor peptides that are not presented by professional APC, and therefore may be highly immunogenic. Once activated, CD4+ T cells produce IFNγ and provide help to CD8+ T cells and do not need to react with native tumor cells. Therefore, the MHC II vaccines have the potential to activate CD4+ Th1 cells that facilitate antitumor immunity. In vitro (5) and in vivo (57) studies with mice support this conclusion. In vitro studies with human MHC II vaccines further demonstrate that the absence of Ii facilitates the activation of MHC II-restricted tumor-specific CD4+ type 1 T cells of HLA-DR-syngeneic healthy donors and cancer patients, and that the vaccines activate CD4+ T cells with a distinct repertoire of T cell receptors (812). A critical negative role for Ii is also supported by studies of human acute myelogenous leukemia (AML). High levels of class II-associated invariant chain peptide (CLIP), a degradation product of Ii, by leukemic blasts is associated with poor patient prognosis (13, 14), whereas down-modulation of CLIP on AML cells increases the activation of tumor-reactive human CD4+ T cells (14, 15).We have now used mass spectrometry to identify MHC II-restricted peptides from MHC II+Ii and MHC II+Ii+ human breast cancer cells to test the concept that the absence of Ii facilitates the presentation of unique immunogenic MHC II-restricted peptides. We report here that a subset of MHC II-restricted peptides from HLA-DR7+ breast cancer cells are unique to Ii cells and are derived from source proteins not used by Ii+ cells. Ii peptides have high binding affinity for HLA-DR7 and activate tumor-specific T-cells from the peripheral blood of healthy donors and breast cancer patients. This is the first study to compare the human tumor cell MHC II peptidome in the absence or presence of Ii and to demonstrate that MHC II+Ii tumor cells present novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号