首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
人呼吸道禽流感病毒受体的分布趋势   总被引:6,自引:1,他引:6  
禽类流感病毒和人类流感病毒具有很强的受体识别特异性,分别与唾液酸α-2,3Gal和α-2,6Gal受体分子结合而感染各自的宿主细胞.这种受体结合特异性是流感病毒在禽类和人类之间跨种属传递的主要障碍.应用凝集素组织化学染色技术,探讨人呼吸道各解剖学部位流感病毒唾液酸受体的分布特征.结果显示,唾液酸α-2,3Gal受体, 即禽类流感受体,主要分布在下呼吸道的呼吸部即呼吸细支气管和肺泡, 而在主气管、支气管和细支气管仅少量分布.相反,人类流感病毒受体,唾液酸α-2,6Gal受体在气管、支气管呈高密度分布,随着支气管分级逐渐降低分布减少,至肺泡分布最少.但比较人呼吸道发育成熟过程中,唾液酸α-2,3Gal和α-2,6Gal受体的表达,未发现明显差别.禽流感H5N1病毒体外感染人呼吸道组织试验结果表明,肺泡上皮较支气管和气管上皮易感染,与唾液酸α-2,3Gal受体分布特点相符合.结果提示,人呼吸道可被禽流感病毒感染,目前H5N1病毒极少发生人传人的特点,可能与个体间上呼吸道唾液酸α-2,3Gal受体表达差异有关.  相似文献   

2.
3.
4.
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary “dead end.” We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.  相似文献   

5.
6.
与许多在细胞浆内复制的RNA病毒不同,流感病毒的复制及转录都在细胞核内进行。流感病毒感染细胞进入细胞浆后,经病毒脱壳将病毒核糖核蛋白体复合物(v RNP)释放到细胞浆。v RNP含有病毒的RNA基因和碱性聚合酶1(PB1)、碱性聚合酶2(PB2)、酸性聚合酶(PA)及核蛋白(NP)。v RNP被主动运送到细胞核内,开始病毒基因组的复制和转录。流感病毒感染细胞的晚期,在细胞浆中新合成的PB1、PB2、PA及NP蛋白也需要进入细胞核,参与新的v RNP的装配。我们简要介绍有关流感病毒v RNP和新合成的PB1、PB2、PA及NP蛋白进入细胞核的机制。  相似文献   

7.
The substitution of glutamic acid (E) for lysine (K) at position 627 of the PB2 protein of avian H5N1 viruses has been identified as a virulence and host range determinant for infection of mammals. Here, we report that the E-to-K host-adaptive mutation in the PB2 gene appeared from day 4 and 5 along the respiratory tracts of mice and was complete by day 6 postinoculation. This mutation correlated with efficient replication of the virus in mice.  相似文献   

8.
9.
禽流感病毒感染禽类可引发呼吸系统到全身不同程度的病变,严重的可导致败血症、休克、多脏器功能衰竭,甚至死亡。上世纪末,禽流感病毒开始跨种向人类传播,其感染引起急性肺损伤、多器官衰竭等,具有较高的致病率和致死率,危害极大,引起了研究者的广泛关注。目前禽流感病毒感染人类及其致病机制尚不明确,本文就此做一综述,为其防治提供参考。  相似文献   

10.
11.
Although current H5N1 highly pathogenic avian influenza viruses (HPAIV) are inefficiently transmitted to humans, infected individuals can suffer from severe disease, often progressing rapidly to acute respiratory distress syndrome and multiorgan failure. This is in contrast with the situation with human influenza viruses, which in immunocompetent individuals usually cause only a respiratory disease which is less aggressive than that observed with avian H5N1 viruses. While the biological basis of inefficient transmission is well documented, the mechanisms by which the H5N1 viruses cause fatal disease remain unclear. In the present study, we demonstrate that human pulmonary microvascular endothelial cells (hPMEC) had a clearly higher susceptibility to infection by H5N1 HPAIV than to infection by human influenza viruses. This was measurable by de novo intracellular nucleoprotein production and virus replication. It was also related to a relatively higher binding capacity to cellular receptors. After infection of hPMEC, cell activation markers E-selectin and P-selectin were upregulated, and the proinflammatory cytokines interleukin-6 and beta interferon were secreted. H5N1 virus infection was also associated with an elevated rate of cell death. Reverse genetics analyses demonstrated a major role for the viral hemagglutinin in this cell tropism. Overall, avian H5N1 viruses have a particular receptor specificity targeting endothelial cells that is different from human influenza viruses, and this H5N1 receptor specificity could contribute to disease pathogenesis.Certain highly pathogenic avian influenza viruses (HPAIV) expressing the H5 and H7 hemagglutinins (HA) have acquired the capacity to infect humans. Particularly, HPAIV with the H5 HA and the neuraminidase (NA) type 1 (H5N1) can cause severe disease, often with a fatal outcome in humans and other mammals (27). With such infections in humans, there are two striking differences compared to infection by human influenza A viruses (IAV). First, bird-to-human and human-to-human transmission has been considered inefficient, and second, the mortality rate of H5N1 virus infections has been unexpectedly high. There is a lot of experimental evidence that inefficient transmission rate is related to several viral gene products not optimally adapted to facilitate infection and replication in the primary target cells, the epithelial cells of the respiratory tract. Of particular importance is the HA determining receptor specificity with human viruses preferentially recognizing sialic acid (SA)-α-2,6-Gal-terminated saccharides (α-2,6-SA), abundantly expressed in the upper respiratory tract, and avian viruses preferentially binding to α-2,3-SA, expressed mainly in the lower respiratory tract and on ciliated epithelial cells (23, 33, 39). In addition, the viral polymerases determining the rate of replication as well as the NS1 protein involved in multiple processes enabling efficient viral replication and evasion of cellular antiviral responses are of importance in determining host tropism (17, 26).However, in contrast to infections with human influenza viruses, avian H5N1 virus infections more often cause severe pneumonia. These are associated with high levels of proinflammatory cytokines and chemokines in the respiratory tract, severe inflammatory reactions, and infiltration of leukocytes. Furthermore, a generalized inflammatory reaction with elevated cytokine and chemokine levels in the circulation, together with leukopenia and multiorgan failure, indicates that an aberrant immunological reaction is an important factor contributing to the fatality of H5N1 virus infections (19). This is supported by in vitro studies of human macrophages, dendritic cells, and epithelial cells, in which it was demonstrated that H5N1 viruses can induce higher levels of inflammatory cytokine and chemokine responses than human IV isolates (2, 3, 37). Based on this, it was proposed that factors of the innate and adaptive immune response are of central importance for the outcome of disease (8, 26).Endothelial cells (EDC) are abundant in all organs, particularly the lung, and play an important role in inflammatory processes through the regulation of leukocyte extravasation, the production of inflammatory cytokines and chemokines, and the regulation of coagulation (4). During systemic disease in chickens infected with H5N1 isolates, the cardiovascular system can be affected with coagulopathy and viral antigen detectable in EDC (15, 25, 36). This also relates to a report demonstrating a targeted infection of EDC in chicken embryo by A/FPV/Rostock/34 (H7N1) virus (6). In this study, the infection of human umbilical vein EDC is also reported. Finally, in humans, various degrees of hemorrhages as well as signs of disseminated intravascular coagulation have been found (1).Accordingly, the present study compared influenza virus isolates of avian and human origin with respect to their characteristics of interaction with human EDC. To this end, we infected primary human lung EDC with different naturally occurring virus isolates as well as viruses created by reverse genetics. Viruses expressing the H5 clearly possessed the greatest potency to infect and replicate in EDC, resulting in activation and inflammatory responses.  相似文献   

12.
13.
14.
The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.  相似文献   

15.
The content of proteins P19 and P15 (mol wt 19,000 and 15,000, respectively) of avian leukovirus in various types of uninfected chicken embryos has been determined by radioimmunoassay. All chicken embryos examined, including embryos which have thus far been classified as group specific (gs) antigen negative by complement fixation tests, contained these viral proteins as well as P27 as previously reported. The embryos known as “gs antigen-positive” type contained about five times as much of these viral proteins as did the “gs antigen-negative” type. The ratio of the three viral proteins was similar for all types of embryos, suggesting that the genes for these proteins are coordinately controlled. In contrast to the relatively high levels of viral internal proteins in gs antigen-negative cells, the amounts of virus-specific RNA detectable by molecular hybridization were extremely low. The levels of helper activity, which presumably reflect the level of viral envelope glycoprotein, were also generally low or undetectable in these cells. Thus, the expression of the gene for envelope glycoprotein does not appear to be controlled coordinately with the genes for viral internal proteins.  相似文献   

16.
Today, global attention is focused on two influenza virus strains: the current pandemic strain, swine origin influenza virus (H1N1-2009), and the highly pathogenic avian influenza virus, H5N1. At present, the infection caused by the H1N1-2009 is moderate, with mortality rates of less <1%. In contrast, infection with the H5N1 virus resulted in high mortality rates, and ca. 60% of the infected patients succumb to the infection. Thus, one of the world greatest concerns is that the H5N1 virus will evolve to allow an efficient human infection and human-to-human transmission. Natural killer (NK) cells are one of the innate immune components playing an important role in fighting against influenza viruses. One of the major NK activating receptors involved in NK cell cytotoxicity is NKp46. We previously demonstrated that NKp46 recognizes the hemagglutinin proteins of B and A influenza virus strains. Whether NKp46 could also interact with H1N1-2009 virus or with the avian influenza virus is still unknown. We analyzed the immunological properties of both the avian and the H1N1-2009 influenza viruses. We show that NKp46 recognizes the hemagglutinins of H1N1-2009 and H5 and that this recognition leads to virus killing both in vitro and in vivo. However, importantly, while the swine H1-NKp46 interactions lead to the direct killing of the infected cells, the H5-NKp46 interactions were unable to elicit direct killing, probably because the NKp46 binding sites for these two viruses are different.Natural killer (NK) cells, which comprise 5 to 15% of peripheral blood lymphocytes, are a key frontline defense against a number of pathogens, including intracellular bacteria, parasites, and most importantly with respect to the present study, viruses (6, 40). The antiviral mechanisms by which NK cells operate include both cytotoxic activity and cytokine/chemokine secretion (21). The NK killing activity is executed by numerous receptors, including NKG2D, NKp80, CD16, and the natural cytotoxic receptors (NCRs): NKp30, NKp44, and NKp46 (7, 10, 25).Although the cellular ligands for NKG2D were identified (31, 38), the identity of several of the cellular ligands for the human NCRs is still unknown, except for BAT3 and B7-H6, which are ligands for NKp30 (8, 30). In contrast, viral ligands were identified for the NCRs, and we demonstrated that pp65 of HCMV interacts with NKp30 (3) and that various influenza virus hemagglutinins (HAs) are ligands for the NKp44 and NKp46 receptors (5, 22). Supporting these observations, it was recently shown that the HA-neuraminidase of Newcastle disease virus could also interact with NKp46 and NKp44 but not with NKp30 (17). Furthermore, we have shown in vivo that in the absence of NCR1 (the mouse homologue of NKp46), A/PR8 influenza virus infection is lethal (14).Human influenza virus (H1 and H3 subtype) infections pose a major threat to the entire population, as exemplified by the three major influenza pandemics that occurred during the 20th century. The Asian (A/H2N2) in 1957 to 1958 and the Hong Kong (A/H3N2) pandemics in 1968 to 1969 resulted in the deaths of 1 to 2 million people and the 1918 “Spanish flu” (A/H1N1) pandemic killed around 50 million people (18). At present, the worldwide concern regarding influenza pandemics concentrates mainly on two viruses: the A/H1N1 swine origin influenza virus (H1N1-2009), which currently causes only a moderate pandemic (the mortality rates are ca. 1%) but is more pathogenic than a regular seasonal influenza virus (19, 26, 27), and the avian influenza virus carrying the unique H5 HA (20). The avian influenza virus is quite deadly and, although it remains a zoonotic infection, ca. 60% of infected humans died due to the infection (28).The unique properties of the H5 protein of the avian influenza virus are one of the main reasons for the virulence of the virus. The H5 of the avian influenza virus binds to cell surface glycoproteins or glycolipids containing terminal sialyl-galactosyl residues linked by 2-3-linkage [Neu5Ac(α2-3)Gal] that are found in the human conjunctiva and ciliated portion of the respiratory columnar epithelium (33). In contrast, human viruses (including all three strains that caused the pandemics described above and the H1N1-2009) bind to receptors that mostly contain terminal 2-6-linked sialyl-galactosyl moieties [Neu5Ac(α2-6)Gal]. Such glycosylations are predominant on epithelial cells in the nasal mucosa, paranasal sinuses, pharynx, trachea, and bronchi (33, 37). It has been suggested that the lack of human-to-human transmission of avian influenza viruses is due to their α2,3-SA receptor binding preference, and the concern is that genetic changes in H5 might alter its preference from α2,3-SA to α2,6-SA, allowing human-to-human transmission.In our previous studies (4, 22) we showed that the interaction between NKp46 and influenza virus HAs depends on the sialylation of the NKp46 receptor. We further demonstrated that the sialic acid residues, which are linked via α2,6 to the threonine 225 residue of NKp46, are crucial for the NKp46 interactions with the various influenza virus HAs (4).We show that, both in vitro and in vivo, the killing of H1N1-2009-infected cells is correlated with the degree of NKp46 binding. Surprisingly, we observed that although NKp46 efficiently recognized the avian H5 HA, such interactions were unable to elicit the direct killing of the infected cells. By using mutagenesis analysis experiments and killing assays we demonstrate that NKp46 interacts with H1 and H5 at distinct sites, since we show that the sugar carrying residue at position 225 is crucial for the NKp46-H1N1-2009 interactions, whereas the interaction of H5 with NKp46 depends on both residues 216 and 225.  相似文献   

17.
18.
A combination of viral, bacterial, and host factors contributes to the severity and overall mortality associated with influenza virus-bacterium superinfections. To date, the virulence associated with the recently identified influenza virus protein PB1-F2 has been largely defined using models of primary influenza virus infection, with only limited assessment in models of Streptococcus pneumoniae superinfection. Specifically, these studies have incorporated isogenic viruses that differ in the PB1-F2 expressed, but there is still knowledge to be gained from evaluation of natural variants derived from a nonhuman host species (swine). Using this rationale, we developed the hypothesis that naturally occurring viruses expressing variants of genes, like the PB1-F2 gene, can be associated with the severity of secondary bacterial infections. To test this hypothesis, we selected viruses expressing variants in PB1-F2 and evaluated outcomes from superinfection with three distinct Gram-positive respiratory pathogens: Streptococcus pneumoniae, Staphylococcus aureus, and Streptococcus pyogenes. Our results demonstrate that the amino acid residues 62L, 66S, 75R, 79R, and 82L, previously proposed as molecular signatures of PB1-F2 virulence for influenza viruses in the setting of bacterial superinfection, are broadly associated with enhanced pathogenicity in swine in a bacterium-specific manner. Furthermore, truncated PB1-F2 proteins can preferentially increase mortality when associated with Streptococcus pyogenes superinfection. These findings support efforts to increase influenza virus surveillance to consider viral genotypes that could be used to predict increased severity of superinfections with specific Gram-positive respiratory pathogens.  相似文献   

19.
Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment.  相似文献   

20.
Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was ∼300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号