首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During the late stages of infection, Salmonella secretes numerous effectors through a type III secretion system that is encoded within Salmonella pathogenicity island 2 (SPI2). Despite the importance of SPI2 as a major virulence factor leading to the systemic spread of the bacteria and diseases, a global view of its effects on host responses is still lacking. Here, we measured global impacts of SPI2 effectors on the host phosphorylation and protein expression levels in RAW264.7 and in HeLa cells, as macrophage and nonphagocytic models of infection. We observe that SPI2 effectors differentially modulate the host phosphoproteome and cellular processes (e.g. protein trafficking, cytoskeletal regulation, and immune signaling) in a host cell-dependent manner. Our unbiased approach reveals the involvement of many previously unrecognized proteins, including E3 ligases (HERC4, RanBP2, and RAD18), kinases (CDK, SIK3, and WNK1), and histones (H2B1F, H4, and H15), in late stages of Salmonella infection. Furthermore, from this phosphoproteome analysis and other quantitative screens, we identified HSP27 as a direct in vitro and in vivo molecular target of the only type III secreted kinase, SteC. Using biochemical and cell biological assays, we demonstrate that SteC phosphorylates multiple sites in HSP27 and induces actin rearrangement through this protein. Together, these results provide a broader landscape of host players contributing to specific processes/pathways mediated by SPI2 effectors than was previously appreciated.Type III secretion systems (T3SSs)1 are specialized virulence factors in Gram-negative pathogens that play an important role in delivering effector proteins to host cells. Salmonella enterica employs two distinct T3SSs encoded in Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2), with numerous effectors encoded around the genome, including a small number in SPI1 and SPI2 (1). SPI1 T3SS effectors are required for the bacterial internalization by intestinal epithelial cells at early stages of infection after oral ingestion. Although Salmonella is subsequently taken up by intestinal macrophages via phagocytosis, SPI2 T3SS effectors function to promote intracellular replication. Part of the role of SPI2 effectors is to control the maturation of the membrane-enclosed, Salmonella-containing vacuole (SCV) where Salmonella survives and replicates, eventually leading to a systemic infection known as typhoid fever (2, 3).Approximately 30 effectors are known to be translocated by the SPI2 T3SS but the actions and targets of most of these effectors are largely unknown (1, 3, 4). A recent systematic study using a single mutant collection of SPI2 genes showed particular virulence factors (e.g. SpvB, SifA, and SteC) play a dominant role in replication within macrophages (5). It is known that SpvB induces cytotoxicity through its ADP-ribosyltransferase activity (6), and SifA is required for maturation of the SCV and the formation of Salmonella-induced filaments (7). SteC has been identified as the sole serine/threonine protein kinase encoded in the Salmonella genome (8), but the target substrates of this kinase within the host are not fully understood, although it has been demonstrated that SteC partially targets the MAP kinase MEK (9). Interestingly, SteC is capable of promoting assembly of an F-actin meshwork around the SCV; this is dependent on its kinase activity but does not require activation of signaling pathways through Rho-associated protein kinase (8), Cdc42, Rac, N-WASP, Scar/WAVE, and Arp2/3 (10). These host signaling proteins are the main targets of T3SS-secreted effectors from many pathogens, including the SPI1 system in Salmonella (11) and Shigella (12). Therefore, SteC is thought to manipulate actin in a unique way through phosphorylation of host protein target(s).Recent advances in high throughput measurements allow us to characterize host gene expression profiles (13) and host phosphoproteme dynamics (14) dependent on the presence of SPI1 effectors in an unbiased, comprehensive manner. However, although it is clear that SPI2 T3SS is a major virulence factor contributing to systemic infection, our knowledge of its effects on host responses is limited. In this study, we used a mass spectrometry (MS)-based quantitative proteomics approach and measured global host phosphorylation changes as well as proteome abundance altered by SPI2 effectors. Furthermore, we explore a molecular target of SPI2 effector kinase SteC by integrating the phosphoproteomics data and other quantitative proteomics screens.  相似文献   

2.
3.
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.  相似文献   

4.
5.
6.
Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) are foodborne pathogens, and outbreaks are often associated with poultry products. Chickens are typically asymptomatic when colonized by these serovars; however, the factors contributing to this observation are uncharacterized. Whereas symptomatic mammals have a body temperature between 37°C and 39°C, chickens have a body temperature of 41°C to 42°C. Here, in vivo experiments using chicks demonstrated that numbers of viable S. Typhimurium or S. Enteritidis bacteria within the liver and spleen organ sites were ≥4 orders of magnitude lower than those within the ceca. When similar doses of S. Typhimurium or S. Enteritidis were given to C3H/HeN mice, the ratio of the intestinal concentration to the liver/spleen concentration was 1:1. In the avian host, this suggested poor survival within these tissues or a reduced capacity to traverse the host epithelial layer and reach liver/spleen sites or both. Salmonella pathogenicity island 1 (SPI-1) promotes localization to liver/spleen tissues through invasion of the epithelial cell layer. Following in vitro growth at 42°C, SPI-1 genes sipC, invF, and hilA and the SPI-1 rtsA activator were downregulated compared to expression at 37°C. Overexpression of the hilA activators fur, fliZ, and hilD was capable of inducing hilA-lacZ at 37°C but not at 42°C despite the presence of similar levels of protein at the two temperatures. In contrast, overexpression of either hilC or rtsA was capable of inducing hilA and sipC at 42°C. These data indicate that physiological parameters of the poultry host, such as body temperature, have a role in modulating expression of virulence.  相似文献   

7.
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.  相似文献   

8.
In this work, we continued to study the genes encoding the RhtB family proteins. We studied regulation of four genes of this family: rhtB, rhtC, yeaS, and yahN, two of which (rhtB and rhtC) were previously shown to be involved in amino acid efflux from cells. The results of this study showed that the expression of these genes is regulated by the global regulator Lrp; it depends on the presence of certain amino acids in the growth medium and increases in certain types of physiological stress.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 374–378.Original Russian Text Copyright © 2005 by Kutukova, Zakataeva, Livshits.  相似文献   

9.
10.
Type III protein secretion is a common virulence determinant in Gram-negative bacteria and the genetic information is often clustered in pathogenicity islands or on virulence plasmids. We have analyzed the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) that is indispensable for systemic disease of Salmonella enterica serotype Typhimurium (S. Typhimurium) in mice. Since the low abundance of this secretion system restricted direct analysis by proteomic approaches, several putative proteins were expressed as recombinant products and analyzed by two-dimensional electrophoresis. The map obtained for SPI2 encoded proteins was correlated to the expression pattern of S. Typhimurium. The latter was compared to the proteins induced by SsrAB, the two-component system regulating SPI2 gene expression. Our results exemplify that recombinant expression is a complementary tool for analysis of low abundant proteins or membrane proteins. This approach contributes to the characterization of these proteins by subcellular fractionation. Furthermore, we show that pulse labeling was necessary to analyze growth phase regulated SPI2 proteins that might not be otherwise detectable.  相似文献   

11.
Long-term batch cultures of Escherichia coli grown in nutrient-rich medium accumulate mutations that provide a growth advantage in the stationary phase (GASP). We have examined the survivors of prolonged stationary phase to identify loci involved in conferring a growth advantage and show that a mutation in the hns gene causing reduced activity of the global regulator H-NS confers a GASP phenotype under specific conditions. The hns-66 allele bears a point mutation within the termination codon of the H-NS open reading frame, resulting in a longer protein that is partially functional. Although isolated from a long-term stationary-phase culture of the parent carrying the rpoS819 allele that results in reduced RpoS activity, the hns-66 survivor showed a growth disadvantage in the early stationary phase (24 to 48 h) when competed against the parent. The hns-66 mutant is also unstable and reverts at a high frequency in the early stationary phase by accumulating second-site suppressor mutations within the ssrA gene involved in targeting aberrant proteins for proteolysis. The mutant was more stable and showed a moderate growth advantage in combination with the rpoS819 allele when competed against a 21-day-old parent. These studies show that H-NS is a target for mutations conferring fitness gain that depends on the genetic background as well as on the stage of the stationary phase.  相似文献   

12.
摘要:【目的】了解致病岛-2(Salmonella Pathogenicity Island 2,SPI-2)对鸡白痢沙门菌致病性的影响,初步探讨研制安全有效的鸡白痢沙门菌减毒株的可行性。【方法】采用λ-red 同源重组系统构建鸡白痢沙门菌S06004株的SPI-2(约40 kb)缺失株S06004ΔSPI2。并与野生型相比较,对该缺失株的生长特性、生化特性、遗传稳定性和致病性等基本生物学特性进行鉴定。【结果】成功构建SPI-2缺失株S06004ΔSPI2,SPI-2的缺失不影响鸡白痢沙门菌的生长特性和生化特性,且该缺失株具有良好的遗传稳定性,其对2日龄雏鸡的LD50是野生株的252 倍。【结论】SPI-2的缺失引起鸡白痢沙门菌毒力的明显下降,这为进一步研究鸡白痢沙门菌SPI-2的功能及制备减毒疫苗奠定了基础。  相似文献   

13.
14.
The H-NS (H1) protein is a major component of bacterial chromatin. Mutations in the hns (osmZ) gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes in an allele-specific manner. H-NS expression was found not to vary with growth phase or growth medium osmolarity. Additionally, 10 independent hns mutations were isolated and characterized. Five of these mutations were the result of an IS10 insertion, each generating a truncated polypeptide. The other five mutations were the same specific deletion of one amino acid, delta Ala46. The various hns mutations exhibited different phenotypes and influenced DNA topology to variable extents. Implications for the mechanism by which H-NS influences gene expression are discussed.  相似文献   

15.
Replication of Salmonella typhimurium in host cells depends in part on the action of the Salmonella Pathogenicity Island 2 (SPI-2) type III secretion system (TTSS), which translocates bacterial effector proteins across the membrane of the Salmonella-containing vacuole (SCV). We have shown previously that one activity of the SPI-2 TTSS is the assembly of a coat of F-actin in the vicinity of bacterial microcolonies. To identify proteins involved in SPI-2 dependent actin polymerization, we tested strains carrying mutations in each of several genes whose products are proposed to be secreted through the SPI-2 TTSS, for their ability to assemble F-actin around intracellular bacteria. We found that strains carrying mutations in either sseB, sseC, sseD or spiC were deficient in actin assembly. The phenotypes of the sseB-, sseC- and sseD- mutants can be attributed to their requirement for translocation of SPI-2 effectors. SpiC was investigated further in view of its proposed role as an effector. Transient expression of a myc::SpiC fusion protein in Hela cells did not induce any significant alterations to the host cell cytoskeleton, and failed to restore actin polymerization around intracellular spiC- mutant bacteria. However, the same protein did complement the mutant phenotype when expressed from a plasmid within bacteria. Furthermore, spiC was found to be required for SPI-2 mediated secretion of SseB, SseC and SseD in vitro. An antibody against SpiC detected the protein on immunoblots from total cell lysates of S. typhimurium expressing SpiC from a plasmid, but it was not detected in secreted fractions after exposure of cells to conditions that result in secretion of other SPI-2 effector proteins. Investigation of the trafficking of SCVs containing a spiC- mutant in macrophages revealed only a low level of association with the lysosomal marker cathepsin D, similar to that of wild-type bacteria. Together, these results show that SpiC is involved in the process of SPI-2 secretion and indicate that phenotypes associated with a spiC- mutant are caused by the inability of this strain to translocate effector proteins, thus calling for further investigation into the function(s) of this protein.  相似文献   

16.
17.
The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.  相似文献   

18.
19.
The facultative intracellular pathogen Salmonella enterica serovar Typhimurium relies on its Salmonella pathogenicity island 2 (SPI2) type III secretion system (T3SS) for intracellular replication and virulence. We report that the oxidoreductase thioredoxin 1 (TrxA) and SPI2 are coinduced for expression under in vitro conditions that mimic an intravacuolar environment, that TrxA is needed for proper SPI2 activity under these conditions, and that TrxA is indispensable for SPI2 activity in both phagocytic and epithelial cells. Infection experiments in mice demonstrated that SPI2 strongly contributed to virulence in a TrxA-proficient background whereas SPI2 did not affect virulence in a trxA mutant. Complementation analyses using wild-type trxA or a genetically engineered trxA coding for noncatalytic TrxA showed that the catalytic activity of TrxA is essential for SPI2 activity in phagocytic cells whereas a noncatalytic variant of TrxA partially sustained SPI2 activity in epithelial cells and virulence in mice. These results show that TrxA is needed for the intracellular induction of SPI2 and provide new insights into the functional integration between catalytic and noncatalytic activities of TrxA and a bacterial T3SS in different settings of intracellular infections.In Escherichia coli, thioredoxin 1 (TrxA, encoded by trxA) is an evolutionary conserved 11-kDa cytosolic highly potent reductase that supports the activities of various oxidoreductases and ribonucleotide reductases (1, 29) and interacts with a number of additional cytoplasmic proteins through the formation of temporary covalent intermolecular disulphide bonds (32). Consequently, as trxA mutants of E. coli (51), Helicobacter pylori (13), and Rhodobacter sphaeroides (34) show increased sensitivity to hydrogen peroxide, TrxA has been defined as a significant oxidoprotectant. In addition, TrxA possess a protein chaperone function that is disconnected from cysteine interactions (30, 32).Salmonella enterica serovar Typhimurium is closely related to E. coli. During divergent evolution, the Salmonella genome acquired a number of virulence-associated genes (20). Many of these genes are clustered on genetic regions termed Salmonella pathogenicity islands (or SPIs). Of these, SPI1 and SPI2 code for separate type III secretion systems (T3SSs). T3SSs are supramolecular virulence-associated machineries that, in several pathogenic gram-negative bacterial species, enable injection of effector proteins from the bacteria into host cells (22, 57). The effector proteins, in turn, manipulate intrinsic host cell functions to facilitate the infection.The SPI1 T3SS of S. serovar Typhimurium is activated for expression in the intestine in response to increased osmolarity and decreased oxygen tension (22, 57). SPI1 effector proteins are primarily secreted into cells that constitute the epithelial layer and interfere with host cell Cdc42 and Rac-1 signaling and actin polymerization. This enables the bacteria to orchestrate their own actin-dependent uptake into nonphagocytic cells (57). SPI1 effector proteins also induce inflammatory signaling and release of interleukin-1β from infected cells (25, 26).Subsequent systemic progression of S. serovar Typhimurium from the intestinal tissue relies heavily on an ability to survive and replicate in phagocytic cells (18, 46, 53, 54). S. serovar Typhimurium uses an additional set of effector proteins secreted by the SPI2 T3SS for replication inside host cells and for coping with phagocyte innate responses to the infection (10, 11, 54). The functions of SPI2 effectors include diversion of vesicular trafficking, induction of apoptotic responses, and manipulation of ubiquitination of host proteins (28, 40, 45, 53). Hence, SPI2 effector proteins create a vacuolar environment that sustains intracellular replication of S. serovar Typhimurium (28).In addition to pathogenicity islands, the in vivo fitness of Salmonella spp. relies on selected functions shared with other enterobacteria. Thus, many virulence genes are integrated into “housekeeping” gene regulatory networks, coded for by a core genome, which steer bacterial stress responses (12, 17, 27, 55). Selected anabolic pathways also contribute to virulence of S. serovar Typhimurium (18, 27), evidently by providing biochemical building blocks for bacterial replication (36).In S. serovar Typhimurium, TrxA is a housekeeping protein that strongly contributes to virulence in cell culture and mouse infection models (8). However, the mechanism by which TrxA activity adds to virulence has not been defined. Here we show that the contribution of TrxA to virulence of S. serovar Typhimurium associates with its functional integration with the SPI2 T3SS under conditions that prevail in the intracellular vacuolar compartment of the host cell. These findings ascribe a novel role to TrxA in bridging environmental adaptations with virulence gene expression and illuminate a new aspect of the interaction between evolutionary conserved and horizontally acquired gene functions in bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号