首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of cellular-automata (CA) models have been created, simulating relationships between water (or aqueous solutions) and solid surfaces of differing hydropathic (i.e., hydrophilic or hydrophobic) nature. Both equilibrium- and dynamic-flow models were examined, employing simple breaking and joining rules to simulate the hydropathic interactions. The CA simulations show that water accumulates near hydrophilic surfaces and avoids hydrophobic surfaces, forming concave-up and concave-down meniscuses, resp., under equilibrium conditions. In the dynamic-flow simulations, the flow rate of water was found to increase past a wall surface as the surface became less hydrophilic, reaching a maximum rate when the solid surface was of intermediate hydropathic state, and then declining with further increase in the hydrophobicity of the surface. Solution simulations show that non-polar solutes tend to achieve higher concentrations near hydrophobic-wall surfaces, whereas other hydrophobic/hydrophilic combinations of solutes and surfaces do not show such accumulations. Physical interpretations of the results are presented, as are some possible biological consequences.  相似文献   

2.
The contact angle, which is generally used to evaluate the hydrophobicities of pure bacterial strains and solid surfaces, was used to study mixed cell cultures of bacteria involved in anaerobic digestion. Previously published data and data from this study showed that most acidogens are hydrophilic (contact angle, <45(deg)) but most of the acetogens and methanogens isolated from granular sludge are hydrophobic (contact angle, >45(deg)). The hydrophobicities of mixtures of hydrophilic and hydrophobic cells were found to be linearly correlated with the cell mixing ratio. The hydrophobicities of cells present in effluents from upflow anaerobic sludge bed reactors which were treating different types of substrates were different depending on the reactor conditions. When the reactor liquid had a high surface tension, cells sloughing off from sludge granules, as well as cells present on the outer surfaces of the granules, were hydrophobic. Short-term batch enrichment cultures revealed that proteins selected for highly hydrophilic cells. Long-term in-reactor enrichment cultures revealed that sugars selected for hydrophilic acidogens on the surfaces of the granules, while fatty acids tended to enrich for hydrophobic methanogens. When linear alkylbenzenesulfonate was added, the cells on the surfaces of granules became more hydrophilic. Control tests performed with pure cultures revealed that there was no change in the surface properties due to linear alkylbenzenesulfonate; hence, the changes in the wash-out observed probably reflect changes in the species composition of the microbial association. A surface layer with moderate hydrophobicity, a middle layer with extremely high hydrophobicity, and a core with high hydrophobicity could be distinguished in the grey granules which we studied.  相似文献   

3.
Kalaji M  Neal AL 《Biopolymers》2000,57(1):43-50
Capsular exopolymers (EPS) of the bacterium Pseudomonas sp. NCIMB 2021 are allowed to self-assemble on hydrophilic and hydrophobic gold surfaces. Tapping mode atomic force microscopy confirms the differences in the surface topography between EPS adsorbed on both surfaces. Fourier-transform IR spectroscopy indicates that the EPS surface coverage is much greater on the hydrophobic surface. Furthermore, an increased contribution is observed from hydrophobic (i.e., methyl and tyrosyl residues) and electrostatic (i.e., carboxylate residues) groups at the hydrophobic surface, but there is relatively less neutral polymer compared to the hydrophilic surface. The behavior of this EPS is in agreement with the behavior of cells of Pseudomonas sp. NCIMB 2021 at hydrophilic and hydrophobic surfaces.  相似文献   

4.
Three biophysical techniques were employed to study the structure and thermal stability of a series of homologous bovine lens gamma-crystallins upon binding to three model surfaces. The surfaces in order of increasing hydrophobicity were silica, methyl silica, and diphenyl silica. Secondary structure was analyzed by deconvolution Fourier transform infrared spectroscopy, while tertiary structure alterations were probed by front surface fluorescence spectroscopy. The effect of surface binding on protein thermal stability was analyzed by fluorescence and differential scanning calorimetry. The comparison of free and surface-bound protein with variations in the electrostatic and hydrophobic character of both the protein and the adsorbent surface with these techniques demonstrated that: (i) destabilization on hydrophobic surfaces is greater than on a more hydrophilic interface, (ii) detectable conformational changes tend to increase as the hydrophobicity of the surface increases, and (iii) subtle structural differences among proteins can play an important role in determining differences in protein stability and structure upon surface adsorption.  相似文献   

5.
The probability of occurrence of helix and β-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor β-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor β-sheet formation with hydrophilic neighbors, but most of them strongly favor β-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and β-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for β-sheets. Therefore, β-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein–protein and protein–lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.  相似文献   

6.
We analyzed the total, hydrophobic, and hydrophilic accessible surfaces (ASAs) of residues from a nonredundant bank of 587 3D structure proteins. In an extended fold, residues are classified into three families with respect to their hydrophobicity balance. As expected, residues lose part of their solvent-accessible surface with folding but the three groups remain. The decrease of accessibility is more pronounced for hydrophobic than hydrophilic residues. Amazingly, Lysine is the residue with the largest hydrophobic accessible surface in folded structures. Our analysis points out a clear difference between the mean (other studies) and median (this study) ASA values of hydrophobic residues, which should be taken into consideration for future investigations on a protein-accessible surface, in order to improve predictions requiring ASA values. The different secondary structures correspond to different accessibility of residues. Random coils, turns, and beta-structures (outside beta-sheets) are the most accessible folds, with an average of 30% accessibility. The helical residues are about 20% accessible, and the difference between the hydrophobic and the hydrophilic residues illustrates the amphipathy of many helices. Residues from beta-sheets are the most inaccessible to solvent (10% accessible). Hence, beta-sheets are the most appropriate structures to shield the hydrophobic parts of residues from water. We also show that there is an equal balance between the hydrophobic and the hydrophilic accessible surfaces of the 3D protein surfaces irrespective of the protein size. This results in a patchwork surface of hydrophobic and hydrophilic areas, which could be important for protein interactions and/or activity.  相似文献   

7.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:3,自引:3,他引:0  
R önner , U., H usmark , U. & H enriksson , A. 1990. Adhesion of bacillus spores in relation to hydrophobicity. Journal of Applied Bacteriology 69 , 550–556.
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

8.
The identification of the surface area able to generate the protein-protein complexation ligand and ion ligation is critical for the recognition of the biological function of particular proteins. The technique based on the analysis of the irregularity of hydrophobicity distribution is used as the criterion for the recognition of the interaction regions. Particularly, the exposure of hydrophobic residues on the surface of protein as well as the localization of the hydrophilic residues in the hydrophobic core is treated as potential area ready to interact with external molecules. The model based on the “fuzzy oil drop” approach treating the protein molecule as the drop of hydrophobicity concentrated in the central part of structure with the hydrophobicity close to zero on the surface according to 3-dimensional Gauss function. The comparison with the observed hydrophobicy in particular protein reveals some irregularities. These irregularities seem to represent the aim-oriented localization.  相似文献   

9.
A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 × 106 cells cm−2 was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s−1), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high air bubble velocities, and spherical strains (i.e., streptococci) detached more efficiently than rod-shaped organisms. The present results demonstrate that methodologies to study bacterial adhesion which include contact with a moving air-liquid interface (i.e., rinsing and dipping) yield detachment of an unpredictable number of adhering microorganisms. Hence, results of studies based on such methodologies should be referred as “bacterial retention” rather than “bacterial adhesion”.  相似文献   

10.
Surface hydrophobic and hydrophilic protein alterations in Candida albicans   总被引:2,自引:0,他引:2  
Abstract Cell surface hydrophobicity influences pathogenesis of Candida albicans . Previous studies suggested that stationary-phase hydrophilic and hydrophobic cells, obtained by growth at 37 and 23°C, respectively, may have similar hydrophobic proteins. However, whether hydrophilic and hydrophobic surface proteins differ during the growth cycle at 37°C is unknown. Freeze-fracture analysis revealed surface fibrillar layer differences between hydrophobic late-lag and hydrophilic stationary-phase yeast cells grown at 37°C. Hydrophilic protein differences were also observed between these populations. However, similar hydrophobic proteins were detected among the late-lag and stationary phase cells grown at 37°C and hydrophobic stationary-phase cells grown at 23°C. These results suggest that hydrophobic proteins remain constant but hydrophilic proteins vary during growth. Thus, conversion from surface hydrophilicity to hydrophobicity by C. albicans may only require alterations in the hydrophilic fibrillar protein components.  相似文献   

11.
The influence of macromolecules other than lipopolysaccharide on the hydrophobic properties ofPasteurella multocida was investigated by assessing cell surface hydrophobicity (CSH) after experimentally modifying surfaces of various strains. CSH of hydrophobic variants was enhanced by growth on blood-supplemented medium and mechanical shearing, whereas chloramphenicol, oxytetracycline, trypsin, and pronase E treatments decreased CSH. No such modifications were observed for hydrophilic strains. Microscopic observations revealed hydrophilic strains to be heavily encapsulated in contrast to hydrophobic strains. Repeated subculturing reduced encapsulation with a concomitant increase in CSH for one hydrophilic strain while exerting no changes in the other hydrophilic strain examined. Hyaluronidase removal of capsular material from a serotype A strain resulted in increased CSH; subsequent exposure to pronase E resulted in partial restoration of hydrophilicity. These data suggest the encapsulation of hydrophilicP. multocida strains masks a relatively hydrophobic surface that is conferred, at least in part, by the presence of one or more surface-exposed proteins common to both hydrophilic and hydrophobic variants.  相似文献   

12.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics.  相似文献   

13.
Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose added, strains were relatively hydrophilic (showing low initial removal rates by hexadecane) and slightly negatively charged. A tendency exists for cells grown with sucrose added to be more hydrophilic than cells grown with glucose or lactose added. Also, the lowest isoelectric points, i.e., the pH values for which the zeta potentials are zero, were measured for strains with glucose added to the growth medium. The isoelectric points for the strains were all rather high, between pH 3 and 5, indicative of protein-rich surfaces, although X-ray photoelectron spectroscopy did not measure excessively large amounts of nitrogen on the cell surfaces. Both MATH and microelectrophoresis were done as a function of pH. Maxima in hydrophobicity were observed at certain pH values. Usually these pH values were in the range of the isoelectric points of the cells. Thus it appears that MATH measures an interplay of hydrophobicity and electrostatic interactions. MATH measures solely hydrophobicity only when electrostatic interactions are absent, i.e., close to the isoelectric points of the cells. Considering that these thermophilic streptococci are all rather hydrophilic, a possible pathway to prevent fouling in the pasteurization process might be to render the heat exchanger plates of the pasteurizer more hydrophobic.  相似文献   

14.
We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH3) or hydroxyl (OH) groups or mixtures of CH3- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and “searching” above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to “sense” that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities.  相似文献   

15.
The chaplin proteins are instrumental in the formation of reproductive aerial structures by the filamentous bacterium Streptomyces coelicolor. They lower the water surface tension thereby enabling aerial growth. In addition, chaplins provide surface hydrophobicity to the aerial hyphae by assembling on the cell surface into an amphipathic layer of amyloid fibrils. We here show that mixtures of cell wall-extracted chaplins can be used to modify a variety of hydrophilic and hydrophobic surfaces in vitro thereby changing their nature. Assembly on glass leads to a protein coating that makes the surface hydrophobic. Conversely, the assembly of chaplins on hydrophobic surfaces renders them hydrophilic. Furthermore, we show that chaplins can stabilize emulsions of oil into water and have an unprecedented surface activity at high pH. Interestingly, this high surface activity coincides with the interfacial assembly of chaplins into a semi-liquid membrane, as opposed to the rigid membrane formed at neutral pH. This semi-liquid membrane possibly represents a trapped intermediate in the assembly process towards the more rigid amyloidal conformation. Taken together, our data shows that chaplins are suitable candidate proteins for a wide range of biotechnological applications.  相似文献   

16.
Lu D  Liu Z  Wu J 《Biophysical journal》2006,90(9):3224-3238
Proteins fold in a confined space not only in vivo, i.e., folding assisted by molecular chaperons and chaperonins in a crowded cellular medium, but also in vitro as in production of recombinant proteins. Despite extensive work on protein folding in bulk, little is known about how and to what extent the thermodynamics and kinetics of protein folding are altered by confinement. In this work, we use a Gō-like off-lattice model to investigate the folding and stability of an all beta-sheet protein in spherical cages of different sizes and surface hydrophobicity. We find whereas extreme confinement inhibits correct folding, a hydrophilic cage stabilizes the protein due to restriction of the unfolded configurations. In a hydrophobic cage, however, strong attraction from the cage surface destabilizes the confined protein because of competition between self-aggregation and adsorption of hydrophobic residues. We show that the kinetics of protein collapse and folding is strongly correlated with both the cage size and the surface hydrophobicity. It is demonstrated that a cage of moderate size and hydrophobicity optimizes both the folding yield and kinetics of structural transitions. To support the simulation results, we have also investigated the refolding of hen-egg lysozyme in the presence of cetyltrimethylammoniumbromide (CTAB) surfactants that provide an effective confinement of the proteins by micellization. The influence of the surfactant hydrophobicity on the structural and biological activity of the protein is determined with circular dichroism spectrum, fluorescence emission spectrum, and biological activity assay. It is shown that, as predicted by coarse-grained simulations, CTAB micelles facilitate the collapse of denatured lysozyme, whereas the addition of beta-cyclodextrin-grafted-PNIPAAm, a weakly hydrophobic stripper, dissociates CTAB micelles and promotes the conformational rearrangement and thereby gives an improved recovery of lysozyme activity.  相似文献   

17.
The initial adhesion of four Debaryomyces hansenii strains to a solid agarose surface was investigated and correlated with their cell size and some cell surface physicochemical properties, i.e. (i) hydrophobicity and (ii) electron donor/acceptor ability. One strain adhered very poorly, whereas the three other strains were more adhesive. The former strain had a very hydrophilic cell surface, whereas the latter strains had more hydrophobic cell surfaces. In addition, the strain with the lowest adhesion among the adhesive strains had a more hydrophobic cell surface than the two most adhesive strains. Finally, the more adhesive the strain was, the larger it was, and the better it was to donate electrons from its cell surface. These results show a clear relationship between the cell size, the cell surface physicochemical properties, and the initial adhesion of D. hansenii. A possible explanation of this relationship is discussed.  相似文献   

18.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

19.
The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique. This technique allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. Three types of biological surfaces were prepared by depositing various lipid-protein monolayers (with thicknesses ranging from 1 to 4 nm) on the inert, molecularly smooth mica surface: (i) hydrophobic lipid monolayers; (ii) amphiphilic polyelectrolyte surfaces of adsorbed polylysine; and (iii) deposited bacterial S-layer proteins. The adhesion, swelling, and wetting properties of these surfaces was measured as a function of relative humidity and time. Initial adhesion is due mainly to the van der Waals forces arising from nonpolar (hydrophobic) contacts. Following adhesive contact, significant molecular rearrangements can occur which alter their hydrophobic-hydrophilic balance and increase their adhesion with time. Increased adhesion is generally enhanced by (i) increased relative humidity (or degree of hydration); (ii) increased contact time; and (iii) increased rates of separation. The results are likely to be applicable to the adhesion of many other biosurfaces, and show that the hydrophobicity of a lipid or protein surface is not an intrinsic property of that surface but depends on its environment (e.g., on whether it is in aqueous solution or exposed to the atmosphere), and on the relative humidity of the atmosphere. It also depends on whether the surface is in adhesive contact with another surface and-when considering dynamic (nonequilibrium) conditions-on the time and previous history of its interaction with that surface. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:4,自引:0,他引:4  
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号