首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hepatocellular carcinoma (HCC), the most common primary liver cancer has a high mortality in China, and it is usually diagnosed at a late stage, thereby leaving patients with few effective treatment options. Chimeric antigen receptor-T (CAR-T) cell therapy, a novel immunotherapy that has shown promising results in leukemia, lymphoma and multiple myeloma, is also expected to work well in solid tumors, including HCC. However, the ideal therapeutic efficacy has not yet been achieved, in part due to tumor antigen escape caused by antigen heterogeneity. To overcome such challenge, we screened a panel of biomarkers in HCC cell lines and found that GPC3 and B7H3 were highly expressed on HCC with expression heterogeneity. Then we developed a novel bispecific T cell engagers CAR-T (CAR.T-BiTEs) that drives the expression of a CAR specific for GPC3 and BiTEs against CD3 and B7H3, herein referred to as “GPC3-BiTE CAR.” We found that BiTEs promoted the increased activation of untransduced T cells and IFN-γ release. Moreover, BiTEs secreted by GPC3-BiTE CAR-HEK293T cells promoted increased cytotoxicity activity of untransduced T cells against GPC3+/B7H3+ (GPC3 positive/B7H3 positive) and GPC3-/B7H3+(GPC3 negative/B7H3 positive) HCC cell lines. In vitro function assays showed that GPC3-BiTE CAR-T cells exhibited greater cytotoxicity activity against GPC3+/B7H3+ HCC cell lines than GPC3 CAR-T cells (GPC3-targeted CAR-T cells) and B7H3 CAR-T cells (B7H3-targeted CAR-T cells). Furthermore, GPC3-BiTE CAR-T cells exhibited superior cytotoxicity against GPC3 negative HCC cell lines compared with GPC3 CAR T cells. In conclusion, our study showed that GPC3-BiTE CAR T cells exhibited superior antitumor activity than single-target CAR-T cells and can overcome tumor escape induced by antigen heterogeneity, suggesting that this could be a promising therapeutic strategy for HCC.  相似文献   

2.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

3.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

4.
5.
Bispecific single-chain antibody constructs specific for human CD3 have been extensively studied for antitumor activity in human xenograft models using severe combined immunodeficient mice supplemented with human T cells. High efficacy at low effector-to-target ratios, independence of T cell costimuli and a potent activation of previously unstimulated polyclonal T cells were identified as hallmarks of this class of bispecific antibodies. Here we studied a bispecific single-chain antibody construct (referred to as ‘bispecific T cell engager’, BiTE) in an immunocompetent mouse model. This was possible by the use of a murine CD3-specific BiTE, and a syngeneic melanoma cell line (B16F10) expressing the human Ep-CAM target. The murine CD3-specific BiTE, called 2C11x4-7 prevented in a dose-dependent fashion the outgrowth of subcutaneously growing B16/Ep-CAM tumors with daily i.v. injections of 5 or 50 μg BiTE which was most effective. Treatment with 2C11x4-7 was effective even when it was started 10 days after tumor cell inoculation but delayed treatments showed a reduction in the number of cured animals. 2C11x4-7 was also highly active in a lung tumor colony model. When treatment was started on the day of intravenous tumor cell injection, seven out of eight animals stayed free of lung tumors, and three out of eight animals when treatment was started on day 5. Our study shows that BiTEs also have a high antitumor activity in immunocompetent mice and that there is no obvious need for costimulation of T cells by secondary agents. Bernd Schlereth and Petra Kleindienst contributed equally to this work.  相似文献   

6.
B7-H3 (CD276) is both an inhibitory ligand for natural killer cells and T cells and a tumor antigen that is widely expressed among human solid tumors. Anti-B7-H3 mouse monoclonal antibody 8H9 has been successfully used for radioimmunotherapy for patients with B7-H3(+) tumors. We present the humanization, affinity maturation, and epitope mapping of 8H9 based on structure determination, modeling, and yeast display methods. The crystal structure of ch8H9 Fab fragment was solved to 2.5-Å resolution and used as a template for humanization. By displaying the humanized 8H9 single chain Fv (scFv) on the surface of yeast, the affinity was matured by sequential random mutagenesis and fluorescence-activated cell sorting. Six mutations (three in the complementarity-determining region and three in the framework regions) were identified and incorporated into an affinity-matured humanized 8H9 construct (hu8H9-6m) and an affinity-matured chimeric 8H9 construct (ch8H9-6m). The hu8H9-6m scFv had a 160-fold improvement in affinity (0.9 nm KD) compared with parental hu8H9 scFv (144 nm KD). The IgG formats of ch8H9-6m and hu8H9-6m (nanomolar to subnanomolar KD) had 2–9-fold enhancements in affinity compared with their parental forms, potent in vitro antibody-dependent cell-mediated cytotoxicity (0.1–0.3 μg/ml EC50), and high tumor uptake in mouse xenografts. Based on in silico docking studies and experimental validation, the molecular epitope of 8H9 was determined to be dependent on the FG loop of B7-H3, a region critical to its function in immunologic blockade and unique among anti-B7-H3 antibodies published to date.  相似文献   

7.
NKp30 is a natural cytotoxicity receptor that is expressed on NK cells and recognizes B7-H6, which is expressed on several types of tumors but few normal cells. To target effector T cells against B7-H6(+) tumors, we developed several chimeric AgRs (CARs) based on NKp30, which contain the CD28- and/or CD3ζ-signaling domains with the transmembrane domains from CD3ζ, CD28, or CD8α. The data show that chimeric NKp30-expressing T cells responded to B7-H6(+) tumor cells. The NKp30 CAR-expressing T cells produced IFN-γ and killed B7-H6 ligand-expressing tumor cells; this response was dependent upon ligand expression on target cells but not on MHC expression. PBMC-derived dendritic cells also express NKp30 ligands, including immature dendritic cells, and they can stimulate NKp30 CAR-bearing T cells to produce IFN-γ, but to a lesser extent. The addition of a CD28-signaling domain significantly enhanced the activity of the NKp30 CAR in a PI3K-dependent manner. Adoptive transfer of T cells expressing a chimeric NKp30 receptor containing a CD28-signaling domain inhibited the growth of a B7-H6-expressing murine lymphoma (RMA/B7-H6) in vivo. Moreover, mice that remained tumor-free were resistant to a subsequent challenge with the wild-type RMA tumor cells, suggesting the generation of immunity against other tumor Ags. Overall, this study demonstrates the specificity and therapeutic potential of adoptive immunotherapy with NKp30 CAR-expressing T cells against B7-H6(+) tumor cells in vivo.  相似文献   

8.
PurposeAcute myeloid leukemia (AML) is a highly heterogeneous neoplastic disease with a poor prognosis that relapses even after its treatment with chimeric antigen receptor (CAR)-T cells targeting a single antigen. CD123 and CLL1 are expressed in most AML blasts and leukemia stem cells, and their low expression in normal hematopoietic stem cells makes them ideal targets for CAR-T. In this study, we tested the hypothesis that a new bicistronic CAR targeting CD123 and CLL1 can enhance antigenic coverage and prevent antigen escape and subsequent recurrence of AML.MethodsCD123 and CLL1 expressions were evaluated on AML cell lines and blasts. Then, in addition to concentrating on CD123 and CLL1, we introduced the marker/suicide gene RQR8 with a bicistronic CAR. Xenograft models of disseminated AML and in vitro coculture models were used to assess the anti-leukemia efficacy of CAR-T cells. The hematopoietic toxicity of CAR-T cells was evaluated in vitro by colony cell formation assays. It was demonstrated in vitro that the combination of rituximab and NK cells caused RQR8-mediated clearance of 123CL CAR-T cells.ResultsWe have successfully established bicistronic 123CL CAR-T cells that can target CD123 and CLL1. 123CL CAR-T cells effectively cleared AML cell lines and blasts. They also demonstrated appreciable anti-AML activity in animal transplant models. Moreover, 123CL CAR-T cells can be eliminated in an emergency by a natural safety switch and don't target hematopoietic stem cells.ConclusionsThe bicistronic CAR-T cells targeting CD123 and CLL1 may be a useful and secure method for treating AML.  相似文献   

9.
B7-H3, a novel B7 family member, positively or negatively regulates T-cell responses. We investigated the clinical relevance and prognostic significance of B7-H3 in hepatocellular carcinoma (HCC). Western blotting showed B7-H3 upregulation in 17 of 24 (70.8 %) HCC tissues compared with nontumor liver tissues (p = 0.028). B7-H3 immunostaining on tissue microarrays containing 240 HCC patient samples indicated that 225 (93.8 %) tumors had aberrant B7-H3 expression, with strong intensity in 79 (32.9 %) cases, whereas B7-H3 expression in peritumor liver cells was weak in most cases (226; 94.2 %). Notably, patients with high/moderate tumor cell B7-H3 expression showed significantly poorer survival (p = 0.009) and increased recurrence (p = 0.002). After multivariable adjustment, high/moderate B7-H3 expression remained significant for an increased risk of recurrence (hazard ratio = 1.79; 95 % confidence interval = 1.19–2.70; p = 0.005). B7-H3 expression correlated with invasive phenotypes like vascular invasion and advanced tumor stage, and the metastatic potential of HCC cell lines. Flow cytometry showed that B7-H3 expression is inversely correlated with proliferation and interferon-γ production by infiltrating T cells. Interferon-γ stimulation significantly upregulated B7-H3 expression in HCC cells in vitro, implicating B7-H3 expression as a feedback mechanism to evade anti-tumor immunity. Importantly, the prognostic value of B7-H3 expression was validated in an independent cohort of 206 HCC patients. Collectively, our data suggest that B7-H3 was abundantly expressed in HCC and was associated with adverse clinicopathologic features and poor outcome. Thus, B7-H3 represents an attractive target for diagnostic and therapeutic manipulation in human HCC.  相似文献   

10.
B7-H3 is a new member of the B7 family. The receptor for B7-H3 has not been identified, but it seems to be expressed on activated T cells. Initial studies have shown that B7-H3 provides a stimulatory signal to T cells. However, recent studies suggest a negative regulatory role for B7-H3 in T cell responses. Thus, the immunological function of B7-H3 is controversial and unclear. In this study, we investigated the effects of neutralizing anti-B7-H3 mAb in a mouse model of allergic asthma to determine whether B7-H3 contributes to the development of pathogenic Th2 cells and pulmonary inflammation. Administration of anti-B7-H3 mAb significantly reduced airway hyperreactivity with a concomitant decrease in eosinophils in the lung as compared with control IgG-treated mice. Treatment with anti-B7-H3 mAb also resulted in decreased production of Th2 cytokines (IL-4, IL-5, and IL-13) in the draining lymph node cells. Although blockade of B7-H3 during the induction phase abrogated the development of asthmatic responses, B7-H3 blockade during the effector phase did not inhibit asthmatic responses. These results indicated an important role for B7-H3 in the development of pathogenic Th2 cells during the induction phase in a murine model of asthma.  相似文献   

11.
BiTE molecules comprise a new class of bispecific single-chain antibodies redirecting previously unstimulated CD8+ and CD4+ T cells for the elimination of target cells. One example is MT103 (MEDI-538; bscCD19xCD3), a CD19-specific BiTE that can induce lysis of normal and malignant B cells at low picomolar concentrations, which is accompanied by T cell activation. Here, we explored in cell culture the impact of the glucocorticoid derivative dexamethasone on various activation parameters of human T cells in response to MT103. In case cytokine-related side effects should occur with BiTE molecules and other T cell-based approaches during cancer therapy it is important to understand whether glucocorticoids do interfere with the cytotoxic potential of T cells. We found that MT103 induced in the presence of target cells secretion by peripheral T cells of interleukin (IL)-2, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), IL-6, IL-10 and IL-4 into the cell culture medium. Production of all studied cytokines was effectively reduced by dexamethasone at a concentration between 1 and 3x10(-7) M. In contrast, upregulation of activation markers CD69, CD25, CD2 and LFA-1 on both CD4+ and CD8+ T cells, and T cell proliferation were barely affected by the steroid hormone analogue. Most importantly, dexamethasone did not detectably inhibit the cytotoxic activity of MT103-activated T cells against a human B lymphoma line as investigated with lymphocytes from 12 human donors. Glucocorticoids thus qualify as a potential co-medication for therapeutic BiTE molecules and other cytotoxic T cell therapies for treatment of cancer.  相似文献   

12.
13.
Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clinical impact on the treatment of hematological malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated. CAR-T cells targeting TAG-72, encapsulated in these microgels possessed high viability (> 87%) after 7 days, equivalent to those grown under normal expansion conditions, with retention of the T cell phenotype and functionality. Microgel recovered CAR-T cells demonstrated potent on-target cytotoxicity against human ovarian cancer in vitro and on three-dimensional tumor spheroids, by completely eliminating tumor cells. The gelatin-based micro-hydrogels have the potential to serve as carrier systems to augment CAR-T immunotherapeutic treatment of solid tumors.  相似文献   

14.
《Cytotherapy》2019,21(6):593-602
BackgroundChimeric antigen receptor (CAR)-T cells are genetically engineered to recognize tumor-associated antigens and have potent cytolytic activity against tumors. Adoptive therapy with CAR-T cells has been highly successful in B-cell leukemia and lymphoma. However, in solid tumor settings, CAR-T cells face a particularly hostile tumor microenvironment where multiple immune suppressive factors serve to thwart the anti-cancer immune response. Clinical trials of solid tumor antigen-targeted CAR-T cells have shown limited efficacy, and issues for current CAR-T cell therapies include failures of expansion and persistence, tumor entry, deletion and functional exhaustion.MethodsWe compared our standard protocol for CAR-T cell manufacturing, currently used to generate CAR-T cells for a phase 1 clinical trial, with two alternative approaches for T-cell activation and expansion. The resulting cultures were analyzed using multicolor flow cytometry, cytokine bead array and xCELLigence cytotoxicity assays.ResultsWe have found that by changing the method of activation we can promote generation of CAR-T cells with enhanced CD62L and CCR7 expression, increased interleukin (IL)-2 production and retention of cytolytic activity, albeit with slower kinetics.DiscussionWe propose that these phenotypic characteristics are consistent with a central memory phenotype that will better enable CAR-T cell survival and persistence after activation in vivo, and we aim to test this in a continuation of our current phase 1 clinical trial of CAR-T cells in patients with advanced melanoma.  相似文献   

15.
The B7-H4 molecule, a unique negative regulator of T lymphocytes which is overexpressed on the surface of various tumor cells, is a particularly important target candidate for tumor therapy because it can be blocked with anti-B7-H4 antibodies to inhibit the B7-H4 signaling pathway. Our previous work established an anti-B7-H4 single-chain variable fragment (scFv) library, so we have now amplified the genes encoding anti-B7-H4-scFv and human IgG1 CH3 and ligated them by overlap extension PCR to obtain a recombinant gene. After sequencing, the gene was cloned into the expression vector pET43.1a and expression was induced in E. coli BL21 (DE3) by isopropyl-β-D-1-thiogalactopyranoside (IPTG). The protein was purified on a nickel-nitrilotriacetic acid (Ni-NTA) resin column and its antigen specificity and affinity were examined by ELISA and western blotting. We also established a Lewis lung cancer model in C57BL/6 mice to further identify the biological function of the scFv protein in vivo. The results showed that tumor volume, body weight and necrotic tissues in the control group were significantly greater than in the experimental group, indicating that selected scFvs had good biological activity and could inhibit tumor growth in tumor-bearing mice. Our work thus offers a new approach for the development of cancer-targeted therapy.  相似文献   

16.
Esophageal cancer, including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), has a poor prognosis and limited therapeutic options. Chimeric antigen receptor (CAR)-T cells represent a potential ESCC treatment. In this study, we examined CD276 expression in healthy and esophageal tumor tissues and explored the tumoricidal potential of CD276-targeting CAR-T cells in ESCC. CD276 was strongly and homogenously expressed in ESCC and EAC tumor lesions but mildly in healthy tissues, representing a good target for CAR-T cell therapy. We generated CD276-directed CAR-T cells with a humanized antigen-recognizing domain and CD28 or 4–1BB co-stimulation. CD276-specific CAR-T cells efficiently killed ESCC tumor cells in an antigen-dependent manner both in vitro and in vivo. In patient-derived xenograft models, CAR-T cells induced tumor regression and extended mouse survival. In addition, CAR-T cells generated from patient T cells demonstrated potent cytotoxicity against autologous tumor cells. Our study indicates that CD276 is an attractive target for ESCC therapy, and CD276-targeting CAR-T cells are worth testing in ESCC clinical trials.  相似文献   

17.
There have been several studies suggesting that cancer stem cells (CSCs) contribute to the high rates of recurrence and resistance to therapies observed in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) has been demonstrated to be a biomarker of CSCs and a potential therapeutic target in HCC. Here, we prepared two anti-EpCAM monoclonal antibodies (1H8 and 2F2) and an anti-EpCAM bispecific T cell engager (BiTE) 1H8/CD3, which was derived from 1H8, and used them to treat HCC in vitro and in vivo. The results demonstrated that all of the developed anti-EpCAM antibodies specifically bound to EpCAM. Neither anti-EpCAM monoclonal antibody had obvious anti-HCC activities in vitro or in vivo. However, anti-EpCAM BiTE 1H8/CD3 induced strong peripheral blood mononuclear cell-dependent cellular cytotoxicity in Huh-7 and Hep3B cells but not EpCAM-negative SK-Hep-1 cells. Notably, 1H8/CD3 completely inhibited the growth of Huh-7 and Hep3B xenografts in vivo. Treatment of the Huh-7 HCC xenografts with 1H8/CD3 significantly suppressed tumor proliferation and reduced the expression of most CSC biomarkers. Intriguingly, galectin-1 (Gal-1) overexpression inhibited 1H8/CD3-induced lymphocytotoxicity in HCCs while knockdown of Gal-1 increased the lymphocytotoxicity. Collectively, these results indicate that anti-EpCAM BiTE 1H8/CD3 is a promising therapeutic agent for HCC treatment. Gal-1 may contribute to the resistance of HCC cells to 1H8/CD3-induced lysis.  相似文献   

18.
《Translational oncology》2022,15(12):101232
The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.  相似文献   

19.
《Translational oncology》2021,14(12):101232
The pancaner molecule CD276 (B7-H3) is an attractive target for antibody based therapy. We identified from a large (1011) phage-displayed single-chain variable fragment (scFv) library, a fully human antibody, B11, which bound with high avidity (KD=0.4 nM) to CD276. B11 specifically bound to the V1/V2 domain of CD276 and competed with the antibody 8H9 (Omburtamab). It was used to design an IgG-format bispecific T cell engager B11-BiTE, which was more effective than 8H9-BiTE in 14 different cancer cell lines. B11-BiTE also exhibited strong ADCC/ADCP. Therefore, the fully human B11-BiTE is a promising candidate for treatment of tumors expressing CD276.  相似文献   

20.
To harness the potent tumor-killing capacity of T cells for the treatment of CD19+ malignancies, we constructed AFM11, a humanized tetravalent bispecific CD19/CD3 tandem diabody (TandAb) consisting solely of Fv domains. The molecule exhibits good manufacturability and stability properties. AFM11 has 2 binding sites for CD3 and 2 for CD19, an antigen that is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. Comparison of the binding and cytotoxicity of AFM11 with those of a tandem scFv bispecific T cell engager (BiTE) molecule targeting the same antigens revealed that AFM11 elicited more potent in vitro B cell lysis. Though possessing high affinity to CD3, the TandAb mediates serial-killing of CD19+ cells with little dependence of potency or efficacy upon effector:target ratio, unlike the BiTE. The advantage of the TandAb over the BiTE was most pronounced at lower effector:target ratios. AFM11 mediated strictly target-dependent T cell activation evidenced by CD25 and CD69 induction, proliferation, and cytokine release, notwithstanding bivalent CD3 engagement. In a NOD/scid xenograft model, AFM11 induced dose-dependent growth inhibition of Raji tumors in vivo, and radiolabeled TandAb exhibited excellent localization to tumor but not to normal tissue. After intravenous administration in mice, half-life ranged from 18.4 to 22.9 h. In a human ex vivo B-cell chronic lymphocytic leukemia study, AFM11 exhibited substantial cytotoxic activity in an autologous setting. Thus, AFM11 may represent a promising therapeutic for treatment of CD19+ malignancies with an advantageous safety risk profile and anticipated dosing regimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号