首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumours lacking argininosuccinate synthetase-1 (ASS1) are auxotrophic for arginine and sensitive to amino-acid deprivation. Here, we investigated the role of ASS1 as a biomarker of response to the arginine-lowering agent, pegylated arginine deiminase (ADI-PEG20), in lymphoid malignancies. Although ASS1 protein was largely undetectable in normal and malignant lymphoid tissues, frequent hypermethylation of the ASS1 promoter was observed specifically in the latter. A good correlation was observed between ASS1 methylation, low ASS1 mRNA, absence of ASS1 protein expression and sensitivity to ADI-PEG20 in malignant lymphoid cell lines. We confirmed that the demethylating agent 5-Aza-dC reactivated ASS1 expression and rescued lymphoma cell lines from ADI-PEG20 cytotoxicity. ASS1-methylated cell lines exhibited autophagy and caspase-dependent apoptosis following treatment with ADI-PEG20. In addition, the autophagy inhibitor chloroquine triggered an accumulation of light chain 3-II protein and potentiated the apoptotic effect of ADI-PEG20 in malignant lymphoid cells and patient-derived tumour cells. Finally, a patient with an ASS1-methylated cutaneous T-cell lymphoma responded to compassionate-use ADI-PEG20. In summary, ASS1 promoter methylation contributes to arginine auxotrophy and represents a novel biomarker for evaluating the efficacy of arginine deprivation in patients with lymphoma.  相似文献   

2.
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination?therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.  相似文献   

3.
Angiogenesis is a multistep process involving a diverse array of molecular signals. Ligands for receptor tyrosine kinases (RTKs) have emerged as critical mediators of angiogenesis. Three families of ligands, vascular endothelial cell growth factors (VEGFs), angiopoietins, and ephrins, act via RTKs expressed in endothelial cells. Recent evidence indicates that VEGF cooperates with angiopoietins to regulate vascular remodeling and angiogenesis in both embryogenesis and tumor neovascularization. However, the relationship between VEGF and ephrins remains unclear. Here we show that interaction between EphA RTKs and ephrinA ligands is necessary for induction of maximal neovascularization by VEGF. EphA2 RTK is activated by VEGF through induction of ephrinA1 ligand. A soluble EphA2-Fc receptor inhibits VEGF-, but not basic fibroblast growth factor-induced endothelial cell survival, migration, sprouting, and corneal angiogenesis. As an independent, but complementary approach, EphA2 antisense oligonucleotides inhibited endothelial expression of EphA2 receptor and suppressed ephrinA1- and VEGF-induced cell migration. Taken together, these data indicate an essential role for EphA receptor activation in VEGF-dependent angiogenesis and suggest a potential new target for therapeutic intervention in pathogenic angiogenesis.  相似文献   

4.
《Biophysical journal》2022,121(10):1897-1908
Cells sense a variety of extracellular growth factors and signaling molecules through numerous distinct receptor tyrosine kinases (RTKs) on the cell surface. In many cases, the same intracellular signaling molecules interact with more than one type of RTK. How signals from different RTKs retain the identity of the triggering receptor and how (or if) different receptors may synergize or compete remain largely unknown. Here we utilize an experimental strategy, combining microscale patterning and single-molecule imaging, to measure the competition between ephrin-A1:EphA2 and epidermal growth factor (EGF):EGF receptor (EGFR) ligand-receptor complexes for the shared downstream signaling molecules, Grb2 and SOS. The results reveal a distinct hierarchy, in which newly formed EGF:EGFR complexes outcompete ephrin-A1:EphA2 for Grb2 and SOS, revealing a type of negative crosstalk interaction fundamentally controlled by chemical mass action and protein copy number limitations.  相似文献   

5.
Single amino acid Arg (arginine) deprivation is currently considered as a therapeutic approach to treat certain types of tumours; the molecular mechanisms that underlie tumour cell sensitivity or resistance to Arg restriction are still little understood. Here, we address the question of whether endogenous levels of key Arg metabolic enzymes [catabolic: arginases, ARG1 (arginase type 1) and ARG2 (arginase type 2), and anabolic: OTC (ornithine transcarbamylase) and ASS (argininosuccinate synthetase)] affect cellular responses to arginine deprivation in vitro. Human epithelial cancer cells of different organs of origin exhibiting variable sensitivity to Arg deprivation provided the experimental models. Neither the basal expression status of the analysed enzymes, nor their changes upon arginine withdrawal correlated with cancer cell sensitivity to arginine deprivation. However, the ability to utilize exogenous Arg precursors (ornithine and citrulline) for growth in Arg‐deficient medium strongly correlated with expression of the corresponding enzymes, OTC and ASS. We also observed that OTC expression was below the level of detection in all the types of tumour cells analysed, suggesting that in vitro, at least for them, Arg is an essential amino acid.  相似文献   

6.
Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.  相似文献   

7.
The related Axl, Sky and Mer receptor tyrosine kinases (RTKs) are increasingly being implicated in a host of discrete cellular responses including cell survival, proliferation, migration and phagocytosis. Furthermore, their ligands Gas6 and protein S are characteristically dependent on vitamin K for expression of their functions. The Gas6/Axl system is implicated in several types of human cancer as well as inflammatory, autoimmune, vascular and kidney diseases. Each member of the Axl RTK subfamily possesses distinct expression profiles as well as discrete functions. In this article, we review the knowledge so far on the intracellular signalling interactions and pathways concerning each of the Axl RTKs. In this way, we hope to gain a greater understanding of the mechanisms that set each of them apart, and that relay their associated functions.  相似文献   

8.
Vaginal atresia is a congenital abnormality of the female genitourinary system, and the specific molecular mechanism leading to failure of vaginal development remains to be elucidated. Here, we report that the female mice lacking Tyro3 RTK subfamily (Tyro3, Axl, and Mer) exhibit a high incidence of distal vaginal atresia. The ratios of the vaginal atresia in Tyro3 RTKs mutant female mice are as follows: 2.5% for Mer(-/-) mice, 4.0% for Axl(-/-)Mer(-/-), 3.7% for Mer(-/-)Tyro3(-/-), 16.06% for Tyro(-/-)Axl(-/-)Mer(-/-) mice. We did not find the vaginal atresia in Axl(-/-), Tyro3(-/-), Axl(-/-) Tyro(-/-), and wild-type mice. These observations suggest that Tyro3 RTKs play roles collaboratively in vaginal development, and Mer is more critical, Axl and Tyro3 support the function of Mer. The phenotype of mice with the vaginal atresia was characterized in this study. Tyro3 RTKs mutant mouse could be a useful model to study the mechanism of vaginal atresia formation.  相似文献   

9.
The discovery of B-RAF activating mutations in malignant melanoma cells has led to the development of a number of targeted drugs, which block exclusively the mutant B-RAF protein. Tumor cells often acquire resistance to B-RAF inhibitors via activation of alternative signaling pathways. One of the resistance mechanisms is activation of PDGF, VEGF, c-KIT, and certain other tyrosine kinases. The possibility of overcoming the resistance to the B-RAF inhibitor Vemurafenib by inactivating receptor tyrosine kinases (RTKs) was studied in metastatic melanoma cell lines differing in B-RAF mutations and RTK activity. It was found that RTK inactivation may help to overcome resistance to B-RAF inhibitors via inhibition of tyrosine kinase phosphorylation and a subsequent blocking of the PI3K-AKT-mTOR and MEK-ERK1/2 downstream signaling pathways. The changes eventually mitigated the cell growth and enhanced the Vemurafenibdependent cell cycle arrest.  相似文献   

10.
Signaling by receptor tyrosine kinases (RTKs) is mediated by their intrinsic kinase activity. Typically, kinase-activating mutations result in ligand-independent signaling and gain-of-function phenotypes. Like other RTKs, Ephs require kinase activity to signal, but signaling by Ephs in vitro also requires clustering by their membrane bound ephrin ligands. The relative importance of Eph kinase activity and clustering for in vivo functions is unknown. We find that knockin mice expressing a mutant form of EphA4 (EphA4(EE)), whose kinase is constitutively activated in the absence of ephrinB ligands, are deficient in the development of thalamocortical projections and some aspects of central pattern generator rhythmicity. Surprisingly, other functions of EphA4 were regulated normally by EphA4(EE), including midline axon guidance, hindlimb locomotion, in vitro growth cone collapse, and phosphorylation of ephexin1. These results suggest that signaling of Eph RTKs follows a multistep process of induced kinase activity and higher-order clustering different from RTKs responding to soluble ligands.  相似文献   

11.
Previous microarray studies have revealed a broad range of genes which are regulated by VHL and have provided much insight into how VHL may function as a tumour suppressor gene ([Wykoff et al., 2000b] and [Zatyka et al., 2002]). The current study has highlighted several genes of interest which are not currently recognised as being regulated by VHL. Of the candidate VHL regulated genes that we identified ASS was selected for further study due to its therapeutic implications. Tumours with low ASS levels display a reduced capacity to synthesise arginine, and as such are reliant on extracellular arginine for normal cellular function. Promising results in mouse xenograft models have shown that arginine deprivation may be a useful treatment strategy for these tumours. Understanding how ASS expression levels are regulated should provide insight into which tumour types would be most sensitive to treatment with arginine degrading enzymes. In this study we provide strong evidence that VHL status regulates ASS expression levels in three independent CCRCC cell backgrounds. Regulation of ASS by VHL/HIF suggests that arginine deprivation may be useful in the treatment of VHL defective CCRCCs and non-renal hypoxic tumours.  相似文献   

12.
Roger S Lo 《Cell research》2012,22(6):945-947
The BRAF inhibitors (BRAFi) induce anti-tumor responses in nearly 60% of patients with advanced V600BRAF-mutant melanomas but only 5% of patients with V600BRAF-mutant colorectal carcinomas. Earlier studies of how a subset of melanoma that initially responds to BRAFi but later acquires drug resistance pointed to the importance of receptor tyrosine kinases (RTKs) in drug escape. In a pair of recent reports, this RTK-mediated mechanism of acquired BRAFi resistance in melanoma is re-surfacing in the context of innate or primary BRAFi resistance in V600BRAF-mutant colorectal carcinomas, suggesting potential upfront therapeutic strategies to prevent BRAFi resistance.V600BRAF mutations are found in >50% of melanomas, nearly 100% of hairy cell leukemias but smaller subsets of more common human malignancies (e.g., colorectal, thyroid)1. The in-human “druggability” of mutant BRAF has been best demonstrated in metastatic BRAF mutant melanomas using the novel small-molecule BRAF inhibitor (BRAFi) PLX4032/vemurafenib, producing survival benefits2. Early clinical results of BRAFi in colorectal carcinoma, however, were disappointing, with only 5% of patients (1 of 21 patients) experiencing a partial response and 19% of patients (4 of 21 patients) experiencing minor responses3. This difference in the clinical results (melanoma vs. colorectal carcinoma) may relate less to their ontological origins but more to alternative states of a dynamic and plastic survival signaling network.The majority of BRAF mutant melanomas responds to BRAFi rapidly but acquires drug resistance within a median time of 6-7 months. The specific mechanisms of acquired BRAFi resistance are variegated but fall under two core pathways: 1) reactivation of RAF-MEK-ERK MAPK signaling, and 2) activation of MAPK-redundant signaling via the receptor tyrosine kinase (RTK)-PI3K-AKT pathway, which is parallel but interconnected to the MAPK pathway. MAPK reactivation can occur via NRAS activating mutations4, COT overexpression5, V600BRAF alternative splicing6, V600BRAF amplification7, and MEK1 activating mutation8,9. MAPK-redundant signaling via RTK overexpression has been shown to result in AKT activation and RAS-CRAF-MEK signaling, bypassing mutant BRAF4,10,11. The repertoire of RTK overexpressed appears restricted but shares a common pattern of PDGFRβ and EGFR overexpression, at least in melanoma cell lines with acquired resistance to vemurafenib4. It is unclear at present how this overexpression of a select number of wild-type RTKs contributes to the molecular details of survival pathway redundancy and cooperativity. Nevertheless, understanding how melanomas acquire BRAFi resistance via core pathways may shed key insights into mechanisms of innate BRAFi resistance in multiple malignancies. Hence, it came as not a complete surprise that a pair of papers published recently implicated RTKs in innate BRAFi resistance in colorectal cancer cell lines12,13. Both studies pointed to EGFR activation and downstream signaling as a key component to innate BRAFi resistance, at least in a majority of colorectal carcinoma (CRC) cell lines examined.Corcoran et al.12 showed that BRAF mutant CRC cell lines, in contrast to BRAF mutant melanoma cell lines, displayed innate resistance to growth inhibition by vemurafenib. An important clue implicating RTK involvement in innate vemurafenib resistance of BRAF mutant CRC cell lines came from the observation that p-ERK recovery occurred soon (hours to days) after vemurafenib treatment, unlike the kinetics of p-ERK recovery in BRAF mutant melanoma cell lines. This relatively rapid recovery of p-ERK post vemurafenib treatment in CRC cell lines is akin to that in melanoma cell lines with acquired BRAFi resistance driven by RTK overexpresion10. Corcoran et al. then traced this propensity for early p-ERK recovery to vemurafenib treatment (24 h)-dependent enhancement of (activated) RAS-GTP levels and MEK activity, parallel to elevated RAS-GTP levels in melanoma cell lines with RTK-driven, acquired BRAFi resistance4. In phospho-RTK arrays, they determined that the p-EGFR level (among others such as p-c-MET and p-IGF1R levels) was elevated in CRC cell lines relative to those in melanoma cells. Vemurafenib treatment (24 h) did not significantly enhance the p-EGFR level (but did elevate the p-IGFR1 level). Elevated p-EGFR levels in BRAF mutant CRC cell lines were correlated with elevated total EGFR levels (i.e., overexpressed compared with BRAF mutant melanoma cell lines). Thus, several observations correlated with innate BRAFi resistance in CRC cell lines: RTK (mostly consistently EGFR) overexpression (at baseline); upregulation of activation-associated phosphorylation of RTKs (at baseline); and upregulation of RAS-GTP levels (in response to BRAFi treatment). Curiously, although EGFR is highly phosphorylated at baseline, the RAS-GTP levels only rose in response to vemurafenib treatment.Corcoran et al. further showed that small-molecule EGFR inhibitors (EGFRi) could downregulate, partially or completely, the RAS-GTP level induced by vemurafenib treatment. The combination of vemurafenib (BRAFi) and gefitnib (EGFRi) could synergistically reduce p-ERK levels and the net growth inhibition of most but not all CRC cell lines studied, suggesting that survival in some CRC cell lines may also depend on other RTKs and downstream signaling (e.g., AKT). Consistently, the combination of vemurafenib and erlotinib (EGFRi) stabilized the growth of, but did not cause significant regression of, CRC xenografts. Simultaneous inhibition or genetic knockdown of multiple RTKs was not explored, leaving unresolved the issue of how multiple RTKs may potentially play cooperative survival roles at baseline or in response to kinase inhibitor therapy.Prahallad et al.13 also compared CRC and melanoma cell lines and showed that EGFR expression is generally higher in CRC cell lines. Vemurafenib treatment (6 h) of the WiDr CRC cell line led to an induction in p-EGFR and p-AKT levels, concomitant with the expected suppression of p-MEK and p-ERK. MEK inhibition, by AZD6244 treatment, similarly led to the rebound phosphorylation of EGFR. Based on earlier literature showing that the ERK kinase phosphorylates Cdc25c, activating its phosphatase activity, and that Cdc25c can dephosphorylate EGFR, Prahallad et al. went on to show that Cdc25c knockdown mimicked vemurafenib treatment in inducing p-EGFR levels. As predicted, vemurafenib treatment of CRC cell line inhibited Cdc25c phosphorylation at a key threonine (Thr 48), which was previously demonstrated to be a key event for its phosphatase activity. Addition of an EGFRi (cetuximab or gefitnib) to the BRAFi vemurafenib treatment downregulated the baseline level of p-ERK and the BRAFi-induced p-AKT level (but not the baseline p-AKT level). Moreover, addition of an EGFRi sensitized CRC cell lines to growth inhibition by vemurafenib in vitro but did not induce tumor regression in vivo, again suggesting incomplete survival signaling blockade. Accordingly, it has been shown that the effect of vemurafenib in shrinking CRC tumor xenografts was enhanced by combining with an AKT inhibitor (MK-2206)14. Moreover, in this study, the addition of vemurafenib to erlotinib treatment also resulted in increased anti-tumor activity and improved survival in xenograft models. It should be pointed out that Prahallad et al. did not formally assess BRAFi and EGFRi synergy, nor did they examine the diversity of RTK overexpression/activity and its contribution to downstream survival signaling (e.g., AKT).These works, along with prior studies4,10, highlight the importance of expression and activity level of RTKs as a key sensitivity determinant of BRAFi resistance in BRAF mutant cancer cell lines (Figure 1). An important question remains as to whether the diversity of RTK overexpression and/or upregulation participates in and contributes to the full BRAFi resistance phenotype. A recent study afforded us a systems-wide view of the RTKinome reprogramming in response to MEK inhibition in the so-called triple-negative breast cancer cell lines15. The balance of the MAPK vs. RTK network signaling may be dynamically influenced by kinase inhibitors targeting RAF or MEK. This daunting diversity of RTK expression/activity may corner us into abandoning a combination of RTK inhibitors (already approved for clinical usage) with a BRAF inhibitor. Instead, we might need to resort to downstream pathway inhibitors not yet approved for clinical usage (e.g., an inhibitor of MEK with an inhibitor of the PI3K-AKT-mTORC1/2 axis) before we have a chance to corner BRAF mutant cancers into death.Open in a separate windowFigure 1Upregulation of receptor tyrosine kinase(s) (RTKs) as a key sensitivity determinant of BRAFi resistance in BRAF mutant cancer cell lines. (A) In BRAF mutant melanoma cell lines, RTKs are generally expressed at very low levels and contribute minimally to survival signaling, resulting in a strong addiction to mutant BRAF signaling and sensitivity to BRAFi. When BRAF mutant melanoma cell lines acquire BRAFi resistance, they upregulate the expression and activity of PDGFRb and other RTKs, resulting in reactivation of MEK-ERK as well as MAPK-redundant PI3K-AKT survival signaling. (B) In BRAF mutant colorectal carcinoma (CRC) cell lines, EGFR and other RTKs are upregulated by overexpression and some level of activation, resulting in MAPK-redundant survival signaling and conferring innate or primary BRAFi resistance. Treatment of CRC cell lines wth a BRAF or a MEK inhibitor can further activate EGFR and potentially other RTKs and stimulate GTP-RAS levels, consolidating innate BRAFi resistance. Red denotes mutated protein (e.g., BRAF); gray symbols denote weak signaling or interactions; multiplicity of protein symbols denotes overexpression; P in blue denotes activation-associated phosphorylation.  相似文献   

13.
Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2.  相似文献   

14.
15.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

16.
Signalling by receptor tyrosine kinases (RTKs) coordinates basic cellular processes during development and in adulthood. Whereas aberrant RTK signalling can lead to cancer, reactivation of RTKs is often found following stress or cell damage. This has led to the common belief that RTKs can counteract degenerative processes and so strategies to exploit them for therapy have been extensively explored. An understanding of how RTK stimuli act at cellular levels is needed, however, to evaluate their mechanism of therapeutic action. In this study, we genetically explored the biological and functional significance of enhanced signalling by the Met RTK in neurons, in the context of a neurodegenerative disease. Conditional met-transgenic mice, namely Rosa26LacZ−stop−Met, have been engineered to trigger increased Met signalling in a temporal and tissue-specific regulated manner. Enhancing Met levels in neurons does not affect either motor neuron (MN) development or maintenance. In contrast, increased neuronal Met in amyotrophic lateral sclerosis (ALS) mice prolongs life span, retards MN loss, and ameliorates motor performance, by selectively delaying disease onset. Thus, our studies highlight the properties of RTKs to counteract toxic signals in a disease characterized by dysfunction of multiple cell types by acting in MNs. Moreover, they emphasize the relevance of genetically assessing the effectiveness of agents targeting neurons during ALS evolution.  相似文献   

17.
Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a 'promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor alpha (TNFalpha)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFalpha-resistant. IL-15Ralpha and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Ralpha interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Ralpha, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl-/- or IL-15Ralpha-/- mice. Thus, IL-15-induced protection from TNFalpha-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Ralpha and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Ralpha.  相似文献   

18.
The c-Cbl proto-oncogene product Cbl has emerged as a negative regulator of receptor and non-receptor tyrosine kinases, a function dependent on its recently identified ubiquitin ligase activity. Here, we report that EphA2, a member of Eph receptor tyrosine kinases is negatively regulated by Cbl. The negative regulation of EphA2 mediated by Cbl is dependent on the activity of EphA2, as the kinase inactive mutant of EphA2 cannot be regulated by Cbl. Moreover, a point mutation (G306E-Cbl) in TKB region of Cbl that has been reported to abolish Cbl binding to RTKs and non-receptor tyrosine kinases impaired the binding to active EphA2. The dominant negative mutant 70Z-Cbl, which has a 17-amino acids deletion in the N-boundary of the RING finger domain, defuncted negative regulatory function of Cbl to EphA2. These results demonstrate that the TKB domain and RING finger domain of Cbl are essential for this negative regulation.  相似文献   

19.
Inhibition of receptor tyrosine kinases (RTKs) such as vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs) has been validated by recently launched small molecules Sutent® and Nexavar®, both of which display activities against several angiogenesis-related RTKs. EphB4, a receptor tyrosine kinase (RTK) involved in the processes of embryogenesis and angiogenesis, has been shown to be aberrantly up regulated in many cancer types such as breast, lung, bladder and prostate. We propose that inhibition of EphB4 in addition to other validated RTKs would enhance the anti-angiogenic effect and ultimately result in more pronounced anti-cancer efficacy. Herein we report the discovery and SAR of a novel series of imidazo[1,2-a]pyrazine diarylureas that show nanomolar potency for the EphB4 receptor, in addition to potent activity against several other RTKs.  相似文献   

20.
Angiogenesis is the result of the combined activity of the tumor microenvironment and signaling molecules. The angiogenic switch is represented as an imbalance between pro- and anti-angiogenic factors and is a rate-limiting step in the development of tumors. Eph receptor tyrosine kinases and their membrane-anchored ligands, known as ephrins, constitute the largest receptor tyrosine kinase (RTK) subfamily and are considered a major family of pro-angiogenic RTKs. Ewing sarcoma (EWS) is a highly aggressive bone and soft tissue tumor affecting children and young adults. As other solid tumors, EWS are reliant on a functional vascular network for the delivery of nutrients and oxygen and for the removal of waste. Based on the biological roles of EphA2 in promoting angiogenesis, we explored the functional role of this receptor and its relationship with caveolin-1 (CAV1) in EWS angiogenesis. We demonstrated that lack of CAV1 results in a significant reduction in micro vascular density (MVD) on 3 different in vivo models. In vitro, this phenomenon correlated with inactivation of EphA2 receptor, lack of AKT response and downregulation of bFGF. We also demonstrated that secreted bFGF from EWS cells acted as chemoattractant for endothelial cells. Furthermore, interaction between EphA2 and CAV1 was necessary for the right localization and signaling of the receptor to produce bFGF through AKT and promote migration of endothelial cells. Finally, introduction of a dominant-negative form of EphA2 into EWS cells mostly reproduced the effects occurred by CAV1 silencing, strongly suggesting that the axis EphA2-CAV1 participates in the promotion of endothelial cell migration toward the tumors favoring EWS angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号