首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of the mechanical properties of tissue engineered cartilage   总被引:9,自引:0,他引:9  
Cartilaginous constructs have been grown in vitro using chondrocytes, biodegradable polymer scaffolds, and tissue culture bioreactors. In the present work, we studied how the composition and mechanical properties of engineered cartilage can be modulated by the conditions and duration of in vitro cultivation, using three different environments: static flasks, mixed flasks, and rotating vessels. After 4-6 weeks, static culture yielded small and fragile constructs, while turbulent flow in mixed flasks induced the formation of an outer fibrous capsule; both environments resulted in constructs with poor mechanical properties. The constructs that were cultured freely suspended in a dynamic laminar flow field in rotating vessels had the highest fractions of glycosaminoglycans and collagen (respectively 75% and 39% of levels measured in native cartilage), and the best mechanical properties (equilibrium modulus, hydraulic permeability, dynamic stiffness, and streaming potential were all about 20% of values measured in native cartilage). Chondrocytes in cartilaginous constructs remained metabolically active and phenotypically stable over prolonged cultivation in rotating bioreactors. The wet weight fraction of glycosaminoglycans and equilibrium modulus of 7 month constructs reached or exceeded the corresponding values measured from freshly explanted native cartilage. Taken together, these findings suggest that functional equivalents of native cartilage can be engineered by optimizing the hydrodynamic conditions in tissue culture bioreactors and the duration of tissue cultivation.  相似文献   

2.
Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p<0.05) by a factor of 4-5 from the top 0.1 mm (28+/-13 kPa, 141+/-10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p<0.001), and correlated with the modulus (both p<0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues.  相似文献   

3.
Articular cartilage has a poor intrinsic capacity for self-repair. The advent of autologous chondrocyte implantation has provided a feasible method to treat cartilage defects. However, the associated drawbacks with the isolation and expansion of chondrocytes from autologous tissue has prompted research into alternative cell sources such as mesenchymal stem cells (MSCs) which have been found to exist in the bone marrow as well as other joint tissues such as the infrapatellar fat pad (IFP), synovium and within the synovial fluid itself. In this work we assessed the chondrogenic potential of IFP-derived porcine cells over a 6 week period in agarose hydrogel culture in terms of mechanical properties, biochemical content and histology. It was found that IFP cells underwent robust chondrogenesis as assessed by glycosaminoglycan (1.47±0.22% w/w) and collagen (1.44±0.22% w/w) accumulation after 42 days of culture. The 1 Hz dynamic modulus of the engineered tissue at this time point was 272.8 kPa (±46.8). The removal of TGF-β3 from culture after 21 days was shown to have a significant effect on both the mechanical properties and biochemical content of IFP constructs after 42 days, with minimal increases occurring from day 21 to day 42 without continued supplementation of TGF-β3. These findings further strengthen the case that the IFP may be a promising cell source for putative cartilage repair strategies.  相似文献   

4.
In the preparation of bioengineered reparative strategies for damaged or diseased tissues, the processes of biomaterial degradation and neotissue synthesis combine to affect the developing mechanical state of multiphase, composite engineered tissues. Here, cell-polymer constructs for engineered cartilage have been fabricated by seeding chondrocytes within three-dimensional scaffolds of biodegradable polymers. During culture, synthetic scaffolds degraded passively as the cells assembled an extracellular matrix (ECM) composed primarily of glycosaminoglycan and collagen. Biochemical and biomechanical assessment of the composite (cells, ECM, and polymer scaffold) were modeled at a unit-cell level to mathematically solve stress-strain relationships and thus construct elastic properties (n=4 samples per seven time points). This approach employed a composite spheres, micromechanical analysis to determine bulk moduli of: (1) the cellular-ECM inclusion within the supporting scaffold structure; and (2) the cellular inclusion within its ECM. Results indicate a dependence of constituent volume fractions with culture time (p<0.05). Overall mean bulk moduli were variably influenced by culture, as noted for the cell-ECM inclusion (K(c-m)=29.7 kPa, p=0.1439), the cellular inclusion (K(c)=5.5 kPa, p=0.0067), and its surrounding ECM (K(m)=373.9 kPa, p=0.0748), as well as the overall engineered construct (K=165.0 kPa, p=0.6899). This analytical technique provides a framework to describe the time-dependent contribution of cells, accumulating ECM, and a degrading scaffold affecting bioengineered construct mechanical properties.  相似文献   

5.
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.  相似文献   

6.
The role of the chondrocyte pericellular matrix (PCM) was examined in a three-dimensional chondrocyte culture system to determine whether retention of the native pericellular matrix could stimulate collagen and proteoglycan accumulation and also promote the formation of a mechanically functional hyaline-like neocartilage. Porcine chondrocytes and chondrons, consisting of the chondrocyte with its intact pericellular matrix, were maintained in pellet culture for up to 12 weeks. Sulfated glycosaminoclycans and type II collagen were measured biochemically. Immunocytochemistry was used to examine collagen localization as well as cell distribution within the pellets. In addition, the equilibrium compressive moduli of developing pellets were measured to determine whether matrix deposition contributed to the mechanical stiffness of the cartilage constructs. Pellets increased in size and weight over a 6-week period without apparent cell proliferation. Although chondrocytes quickly rebuilt a PCM rich in type VI collagen, chondron pellets accumulated significantly more proteoglycan and type II collagen than did chondrocyte pellets, indicating a greater positive effect of the native PCM. After 5 weeks in chondron pellets, matrix remodeling was evident by microscopy. Cells that had been uniformly distributed throughout the pellets began to cluster between large areas of interterritorial matrix rich in type II collagen. After 12 weeks, clusters were stacked in columns. A rapid increase in compressive strength was observed between 1 and 3 weeks in culture for both chondron and chondrocyte pellets and, by 6 weeks, both had achieved 25% of the equilibrium compressive stiffness of cartilage explants. Retention of the in vivo PCM during chondrocyte isolation promotes the formation of a mechanically functional neocartilage construct, suitable for modeling the responses of articular cartilage to chemical stimuli or mechanical compression.  相似文献   

7.
Background:  Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints.
Materials and methods:  Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated.
Results:  Rapid prototyping of 3DF architectures with 100% interconnecting pores promoted homogeneous distribution of viable cells, glycosaminoglycan (GAG) and collagen type II; significantly greater GAG content and differentiation capacity (GAG/DNA) in vitro compared to CM architectures; and higher mechanical equilibrium modulus and dynamic stiffness (at 0.1 Hz). Six weeks after implantation, femoral and tibial constructs had integrated with rabbit bone and knee flexion/extension and partial load bearing were regained. Histology demonstrated articulating surfaces between femoral and tibial constructs for CM and 3DF architectures; however, repair tissue appeared fibrocartilage-like and did not resemble implanted cartilage.
Conclusions:  Anatomically shaped, tissue-engineered constructs with designed mechanical properties and internal pore architectures may offer alternatives for reconstruction or restoration of congruent articulating surfaces in small joints.  相似文献   

8.
This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300 mOsM) or isotonic (330 mOsM) media (p<0.05). Constant exposure of SDSC-seeded constructs to 400 mOsM media from day 0 to day 49 yielded a Young's modulus of 513±89 kPa and GAG content of 7.39±0.52%ww on day 49, well within the range of values of native, immature bovine cartilage. Primary chondrocyte-seeded constructs achieved almost as high a Young's modulus, reaching 487±187 kPa and 6.77±0.54%ww (GAG) for the 400 mOsM condition (day 42). These findings suggest hypertonic loading as a straightforward strategy for 3D cultivation with significant benefits for cartilage tissue engineering strategies. In an effort to understand potential mechanisms responsible for the observed response, cell volume measurements in response to varying osmotic conditions were evaluated in relation to the Boyle–van't Hoff (BVH) law. Results confirmed that chondrocytes behave as perfect osmometers; however SDSCs deviated from the BVH relation.  相似文献   

9.
The application of tissue-engineered cartilage in a clinical setting requires a noninvasive method to assess the biophysical and biochemical properties of the engineered cartilage. Since articular cartilage is composed of 70-80% water and has dense extracellular matrixes (ECM), it is considered that the condition of the water molecules in the tissue is correlated with its biomechanical property. Therefore, magnetic resonance imaging (MRI) represents a potential approach to assess the biophysical property of the engineered cartilage. In this study, we test the hypothesis that quantitative MRI can be used as a noninvasive assessment method to assess the biophysical property of the engineered cartilage. To reconstruct a model of cartilaginous tissue, chondrocytes harvested from the humeral head of calves were embedded in an agarose gel and cultured in vitro up to 4 weeks. Equilibrium Young's moduli were determined from the stress relaxation tests. After mechanical testing, MRI-derived parameters (longitudinal relaxation time T1, transverse relaxation time T2, and water self-diffusion coefficient D) were measured. The equilibrium Young's modulus of the engineered cartilage showed a tendency to increase with an increase in the culture time, whereas T1 and D decreased. Based on a regression analysis, T1 and D showed a strong correlation with the equilibrium Young's modulus. The results showed that T1 and D values derived from the MRI measurements could be used to noninvasively monitor the biophysical properties of the engineered cartilage.  相似文献   

10.
In tissue engineering studies, scaffolds play a very important role in offering both physical and chemical cues for cell growth and tissue regeneration. However, in some cases, tissue regeneration requires scaffolds with high mechanical properties (e.g., bone and cartilage), while cells need a soft mechanical microenvironment. In this study, to mimic the heterogenous mechanical properties of a spinal cord tissue, a biomimetic rat tissue construct is fabricated. A collagen-coated poly(lactic-co-glycolic acid) scaffold is manufactured using thermally induced phase separation casting. Primary rat neural cells (P01 Wistar rat cortex) with soft hydrogels are later printed within the scaffold using an image-guided intrascaffold cell assembly technique. The scaffolds have unidirectional microporous structure with parallel axial macrochannels (260 ± 4 µm in diameter). Scaffolds showed mechanical properties similar to rat spine (ultimate tensile strength: 0.085 MPa, Young's modulus [stretch]: 0.31 MPa). The bioink composed of gelatin/alginate/fibrinogen is precisely printed into the macrochannels and showed mechanical properties suitable for neural cells (Young's modulus [compressive]: 3.814 kPa). Scaffold interface, cell viability, and immunostaining analyses show uniform distribution of stable, healthy, and elongated neural cells and neurites over 14 culture days in vitro. The results demonstrated that this method can serve as a valuable tool to aid manufacturing of tissue constructs requiring heterogenous mechanical properties for complex cell and/or biomolecule assembly.  相似文献   

11.
The objective of this study was to determine how in vitro mechanical stimulation of tissue engineered constructs affects their stiffness and modulus in culture and tendon repair biomechanics 12 weeks after surgical implantation. Using six female adult New Zealand White rabbits, autogenous tissue engineered constructs were created by seeding mesenchymal stem cells (0.1 x 10(6) cells/ml) in collagen gel (2.6 mg/ml) and combining both with a collagen sponge. Employing a novel experimental design strategy, four constructs from each animal were mechanically stimulated (one 1 Hz cycle every 5 min to 2.4% peak strain for 8 h/day for 2 weeks) while the other four remained unstretched during the 2 week culture period. At the end of incubation, three of the mechanically stimulated (S) and three of the nonstimulated (NS) constructs from each animal were assigned for in vitro mechanical testing while the other two autogenous constructs were implanted into bilateral full-thickness, full-length defects created in the central third of rabbit patellar tendons (PTs). No significant differences were found in the in vitro linear stiffnesses between the S (0.15+/-0.1 N/mm) and NS constructs (0.08+/-0.02 N/mm; mean+/-SD). However, in vitro mechanical stimulation significantly increased the structural and material properties of the repair tissue, including a 14% increase in maximum force (p=0.01), a 50% increase in linear stiffness (p=0.001), and 23-41% increases in maximum stress and modulus (p=0.01). The S repairs achieved 65%, 80%, 60%, and 40% of normal central PT maximum force, linear stiffness, maximum stress, and linear modulus, respectively. The results for the S constructs exceed values obtained previously by our group using the same animal and defect model, and to our knowledge, this is the first study to show the benefits of in vitro mechanical stimulation on tendon repair biomechanics. In addition, the linear stiffnesses for the construct and repair were positively correlated (r=0.56) as were their linear moduli (r=0.68). Such in vitro predictors of in vivo outcome hold the potential to speed the development of tissue engineered products by reducing the time and costs of in vivo studies.  相似文献   

12.

Introduction

Costochondral cells may be isolated with minimal donor site morbidity and are unaffected by pathologies of the diarthrodial joints. Identification of optimal exogenous stimuli will allow abundant and robust hyaline articular cartilage to be formed from this cell source.

Methods

In a three factor, two level full factorial design, the effects of hydrostatic pressure (HP), transforming growth factor β1 (TGF-β1), and chondroitinase ABC (C-ABC), and all resulting combinations, were assessed in third passage expanded, redifferentiated costochondral cells. After 4 wks, the new cartilage was assessed for matrix content, superficial zone protein (SZP), and mechanical properties.

Results

Hyaline articular cartilage was generated, demonstrating the presence of type II collagen and SZP, and the absence of type I collagen. TGF-β1 upregulated collagen synthesis by 175% and glycosaminoglycan synthesis by 75%, resulting in a nearly 200% increase in tensile and compressive moduli. C-ABC significantly increased collagen content, and fibril density and diameter, leading to a 125% increase in tensile modulus. Hydrostatic pressure increased fibril diameter by 30% and tensile modulus by 45%. Combining TGF-β1 with C-ABC synergistically increased collagen content by 300% and tensile strength by 320%, over control. No significant differences were observed between C-ABC/TGF-β1 dual treatment and HP/C-ABC/TGF-β1.

Conclusions

Employing biochemical, biophysical, and mechanical stimuli generated robust hyaline articular cartilage with a tensile modulus of 2 MPa and a compressive instantaneous modulus of 650 kPa. Using expanded, redifferentiated costochondral cells in the self-assembling process allows for recapitulation of robust mechanical properties, and induced SZP expression, key characteristics of functional articular cartilage.  相似文献   

13.
Articular cartilage cannot repair itself in response to degradation from injury or osteoarthritis. As such, there is a substantial clinical need for replacements of damaged cartilage. Tissue engineering aims to fulfill this need by developing replacement tissues in vitro. A major goal of cartilage tissue engineering is to produce tissues with robust biochemical and biomechanical properties. One technique that has been proposed to improve these properties in engineered tissue is the use of non-enzymatic glycation to induce collagen crosslinking, an attractive solution that may avoid the risks of cytotoxicity posed by conventional crosslinking agents such as glutaraldehyde. The objectives of this study were (1) to determine whether continuous application of ribose would enhance biochemical and biomechanical properties of self-assembled articular cartilage constructs, and (2) to identify an optimal time window for continuous ribose treatment. Self-assembled constructs were grown for 4 weeks using a previously established method and were subjected to continuous 7-day treatment with 30 mM ribose during culture weeks 1, 2, 3, or 4, or for the entire 4-week culture. Control constructs were grown in parallel, and all groups were evaluated for gross morphology, histology, cellularity, collagen and sulfated glycosaminoglycan (GAG) content, and compressive and tensile mechanical properties. Compared to control constructs, it was found that treatment with ribose during week 2 and for the entire duration of culture resulted in significant 62% and 40% increases in compressive stiffness, respectively; significant 66% and 44% increases in tensile stiffness; and significant 50% and 126% increases in tensile strength. Similar statistically significant trends were observed for collagen and GAG. In contrast, constructs treated with ribose during week 1 had poorer biochemical and biomechanical properties, although they were significantly larger and more cellular than all other groups. We conclude that non-enzymatic glycation with ribose is an effective method for improving tissue engineered cartilage and that specific temporal intervention windows exist to achieve optimal functional properties.  相似文献   

14.
The mechanical environment of the chondrocyte is an important factor that influences the maintenance of the articular cartilage extracellular matrix. Previous studies have utilized theoretical models of chondrocytes within articular cartilage to predict the stress-strain and fluid flow environments around the cell, but little is currently known regarding the cellular properties which are required for implementation of these models. The objectives of this study were to characterize the mechanical behavior of primary human chondrocytes and to determine the Young's modulus of chondrocytes from non-osteoarthritic ('normal') and osteoarthritic cartilage. A second goal was to quantify changes in the volume of isolated chondrocytes in response to mechanical deformation. The micropipette aspiration technique was used to measure the deformation of a single chondrocyte into a glass micropipette in response to a prescribed pressure. The results of this study indicate that the human chondrocyte behaves as a viscoelastic solid. No differences were found between the Young's moduli of normal (0.65+/-0.63 kPa, n = 44) and osteoarthritic chondrocytes (0.67+/-0.86 kPa, n = 69, p = 0.93). A significant difference in cell volume was observed immediately and 600 s after complete aspiration of the cell into the pipette (p < 0.001), and the magnitude of this volume change between normal (11+/-11%, n = 40) and osteoarthritic (20+/-11%, n = 41) chondroctyes was significantly different at both time points (p < 0.002). This finding suggests that chondrocytes from osteoarthritic cartilage may have altered volume regulation capabilities in response to mechanical deformation. The mechanical and volumetric properties determined in this study will be of use in analytical and finite element models of chondrocyte-matrix interactions in order to better predict the mechanical environment of the cell in vivo.  相似文献   

15.
Knowledge of mechanical properties and failure mechanisms of biofilms is needed to determine how biofilms react on mechanical stress. Methods currently available cannot be used to determine mechanical properties of biofilms on a small scale with high accuracy. A novel microindentation apparatus in combination with a confocal microscope was used to determine the viscoelastic properties of Streptococcus mutans biofilms. The apparatus comprises a small glass indenter and a highly sensitive force transducer. It was shown that the present biofilm, grown under still conditions, behaves as a viscoelastic solid with a storage modulus of 1-8 kPa and a loss modulus of 5-10 kPa at a strain of 10%. Biofilm failure was investigated visually through a confocal microscope by dragging the indenter through the biofilm. It was shown that the tensile strength of the biofilm is predominantly determined by the tensile strength of the extracellular polysaccharide matrix. The combination of microindentation and confocal microscopy is a promising technique to determine and characterize the mechanical properties of soft materials in various fields of microbiology.  相似文献   

16.
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.  相似文献   

17.
The effects of doxycycline were examined on articular cartilage glycosaminoglycan (GAG) release and biphasic mechanical properties following two levels of impact loading at 1 and 2 weeks post-injury. Further, treatment for two continuous weeks was compared to treatment for only the 1st week of a 2-week culture period. Following impact at two levels, articular cartilage explants were cultured for 1 or 2 weeks with 0, 50, or 100 microM doxycycline. Histology, GAG release to the media, and creep indentation biomechanical properties were examined. The "High" (2.8 J) impact level had gross surface damage, whereas "Low" (1.1 J) impact was indiscernible from non-impacted controls. GAG staining decreased after High impact, but doxycycline did not visibly affect staining. High impact resulted in decreased aggregate moduli at both 1 and 2 weeks and increased permeability at 2 weeks, but tissue mechanical properties were not affected by doxycycline treatment. At 1 week, High impact resulted in more GAG release compared to non-impacted controls. However, following High impact, 100 microM doxycycline reduced cumulative GAG release at 1 and 2 weeks by 30% and 38%, respectively, compared to no treatment. Interestingly, there was no difference in GAG release comparing 2 weeks continuous treatment with 1 week on, 1 week off. These results support the hypothesis that doxycycline can mitigate GAG release from articular cartilage following impact loads. However, doxycycline was unable to prevent the loss of tissue stiffness observed post-impact, presumably due to initial matrix damage resulting solely from mechanical trauma.  相似文献   

18.
The nanomechanical properties of individual cartilage cells (chondrocytes) and their aggrecan and collagen-rich pericellular matrix (PCM) were measured via atomic force microscope nanoindentation using probe tips of two length scales (nanosized and micron-sized). The properties of cells freshly isolated from cartilage tissue (devoid of PCM) were compared to cells that were cultured for selected times (up to 28 days) in 3-D alginate gels which enabled PCM assembly and accumulation. Cells were immobilized and kept viable in pyramidal wells microfabricated into an array on silicon chips. Hertzian contact mechanics and finite element analyses were employed to estimate apparent moduli from the force versus depth curves. The effects of culture conditions on the resulting PCM properties were studied by comparing 10% fetal bovine serum to medium containing a combination of insulin growth factor-1 (IGF-1)+osteogenic protein-1 (OP-1). While both systems showed increases in stiffness with time in culture between days 7 and 28, the IGF-1+OP-1 combination resulted in a higher stiffness for the cell-PCM composite by day 28 and a higher apparent modulus of the PCM which is compared to the FBS cultured cells. These studies give insight into the temporal evolution of the nanomechanical properties of the pericellar matrix relevant to the biomechanics and mechanobiology of tissue-engineered constructs for cartilage repair.  相似文献   

19.
This study investigated the hypothesis that dynamic compression loading enhances tissue formation and increases mechanical properties of anatomically shaped tissue engineered menisci. Bovine meniscal fibrochondrocytes were seeded in 2%w/v alginate, crosslinked with CaSO(4), injected into μCT based molds, and post crosslinked with CaCl(2). Samples were loaded via a custom bioreactor with loading platens specifically designed to load anatomically shaped constructs in unconfined compression. Based on the results of finite element simulations, constructs were loaded under sinusoidal displacement to yield physiological strain levels. Constructs were loaded 3 times a week for 1 h followed by 1 h of rest and loaded again for 1 h. Constructs were dynamically loaded for up to 6 weeks. After 2 weeks of culture, loaded samples had 2-3.2 fold increases in the extracellular matrix (ECM) content and 1.8-2.5 fold increases in the compressive modulus compared with static controls. After 6 weeks of loading, glycosaminoglycan (GAG) content and compressive modulus both decreased compared with 2 week cultures by 2.3-2.7 and 1.5-1.7 fold, respectively, whereas collagen content increased by 1.8-2.2 fold. Prolonged loading of engineered constructs could have altered alginate scaffold degradation rate and/or initiated a catabolic cellular response, indicated by significantly decreased ECM retention at 6 weeks compared with 2 weeks. However, the data indicates that dynamic loading had a strikingly positive effect on ECM accumulation and mechanical properties in short term culture.  相似文献   

20.
Articular cartilage has a distinct zonal architecture, and previous work has shown that chondrocytes from different zones exhibit variations in gene expression and biosynthesis. In this study, the material properties of single chondrocytes from the superficial and middle/deep zones of bovine distal metatarsal articular cartilage were determined using unconfined compression and digital videocapture. To determine the viscoelastic properties of zonal chondrocytes, unconfined creep compression experiments were performed and the resulting creep curves of individual cells were fit using a standard linear viscoelastic solid model. In the model, a fixed value of the Poisson's ratio was used, determined optically from direct compression of middle/deep chondrocytes. The two approaches used in this study yielded the following average material properties of single chondrocytes: Poisson's ratio of 0.26+/-0.08, instantaneous modulus of 1.06+/-0.82 kPa, relaxed modulus of 0.78+/-0.58 kPa, and apparent viscosity of 4.08+/-7.20 kPa s. Superficial zone chondrocytes were found to be significantly stiffer than middle/deep zone chondrocytes. Attachment time did not affect the stiffness of the cells. The zonal variation in viscoelastic properties may result from the distinct mechanical environments experienced by the cells in vivo. Identifying intrinsic differences in the biomechanics of superficial and middle/deep zone chondrocytes is an important component in understanding how biomechanics influence articular cartilage health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号