首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Empirical studies over the past two decades have provided support for the hypothesis that schizophrenia is characterized by altered connectivity patterns in functional brain networks. These alterations have been proposed as genetically mediated diagnostic biomarkers and are thought to underlie altered cognitive functions such as working memory. However, the nature of this dysconnectivity remains far from understood. In this study, we perform an extensive analysis of functional connectivity patterns extracted from MEG data in 14 subjects with schizophrenia and 14 healthy controls during a 2-back working memory task. We investigate uni-, bi- and multivariate properties of sensor time series by computing wavelet entropy of and correlation between time series, and by constructing binary networks of functional connectivity both within and between classical frequency bands (, , , and ). Networks are based on the mutual information between wavelet time series, and estimated for each trial window separately, enabling us to consider both network topology and network dynamics. We observed significant decreases in time series entropy and significant increases in functional connectivity in the schizophrenia group in comparison to the healthy controls and identified an inverse relationship between these measures across both subjects and sensors that varied over frequency bands and was more pronounced in controls than in patients. The topological organization of connectivity was altered in schizophrenia specifically in high frequency and band networks as well as in the - cross-frequency networks. Network topology varied over trials to a greater extent in patients than in controls, suggesting disease-associated alterations in dynamic network properties of brain function. Our results identify signatures of aberrant neurophysiological behavior in schizophrenia across uni-, bi- and multivariate scales and lay the groundwork for further clinical studies that might lead to the discovery of new intermediate phenotypes.  相似文献   

2.
The impact of the biological network structures on the divergence between the two copies of one duplicate gene pair involved in the networks has not been documented on a genome scale. Having analyzed the most recently updated Database of Interacting Proteins (DIP) by incorporating the information for duplicate genes of the same age in yeast, we find that there was a highly significantly positive correlation between the level of connectivity of ancient genes and the number of shared partners of their duplicates in the protein-protein interaction networks. This suggests that duplicate genes with a low ancestral connectivity tend to provide raw materials for functional novelty, whereas those duplicate genes with a high ancestral connectivity tend to create functional redundancy for a genome during the same evolutionary period. Moreover, the difference in the number of partners between two copies of a duplicate pair was found to follow a power-law distribution. This suggests that loss and gain of interacting partners for most duplicate genes with a lower level of ancestral connectivity is largely symmetrical, whereas the "hub duplicate genes" with a higher level of ancient connectivity display an asymmetrical divergence pattern in protein-protein interactions. Thus, it is clear that the protein-protein interaction network structures affect the divergence pattern of duplicate genes. Our findings also provide insights into the origin and development of biological networks.  相似文献   

3.
Knowledge of the pathogen-host interactions between the species is essentialin order to develop a solution strategy against infectious diseases. In vitro methods take extended periods of time to detect interactions and provide very few of the possible interaction pairs. Hence, modelling interactions between proteins has necessitated the development of computational methods. The main scope of this paper is integrating the known protein interactions between thehost and pathogen organisms to improve the prediction success rate of unknown pathogen-host interactions. Thus, the truepositive rate of the predictions was expected to increase.In order to perform this study extensively, encoding methods and learning algorithms of several proteins were tested. Along with human as the host organism, two different pathogen organisms were used in the experiments. For each combination of protein-encoding and prediction method, both the original prediction algorithms were tested using only pathogen-host interactions and the same methodwas testedagain after integrating the known protein interactions within each organism. The effect of merging the networks of pathogen-host interactions of different species on the prediction performance of state-of-the-art methods was also observed. Successwas measured in terms of Matthews correlation coefficient, precision, recall, F1 score, and accuracy metrics. Empirical results showed that integrating the host and pathogen interactions yields better performance consistently in almost all experiments.  相似文献   

4.
肿瘤标志物对于肺腺癌病人的临床诊断和预后具有重要意义. 本研究根据临床诊断选取人肺腺癌组织和癌旁正常肺组织为研究对象,采用差速离心联合双水相法纯化组织细胞质膜,运用同位素标记相对和绝对定量技术结合高效液相色谱 串联质谱技术,鉴定出肺腺癌组织和癌旁正常肺组织的差异蛋白质41种. 同癌旁正常肺组织相比,18个蛋白质在肺腺癌组织中表达上调,23个蛋白质在肺腺癌组织中表达下调. 生物信息学分析发现,差异质膜蛋白质FLOT1、CAV1和ITGB1均处于蛋白质相互作用网络的重要位置,可能参与了肺腺癌相关信号转导.利用蛋白质印迹和免疫组织化学染色验证,差异蛋白质FLOT1、CAV1和ITGB1在肺腺癌织和癌旁正常肺组织的表达情况,其验证结果与蛋白质组学研究结果一致. 研究结果对肺腺癌诊断标志物和肺腺癌癌变分子机理研究具有重要意义.  相似文献   

5.
Complex networks: two ways to be robust?   总被引:6,自引:0,他引:6  
Recent studies of biological networks have focused on the distribution of the number of links per node. However, the connectivity distribution does not uncover all the complexity of their topology. Here, we analyse the relation between the connectivity of a species and the average connectivity of its nearest neighbours in three of the most resolved community food webs. We compare the pattern arising with the one recently reported for protein networks and for a simple null model of a random network. Whereas two highly connected nodes are unlikely to be connected between each other in protein networks, the reverse happens in food webs. We discuss this difference in organization in relation to the robustness of biological networks to different types of perturbation.  相似文献   

6.
Revealing organizational principles of biological networks is an important goal of systems biology. In this study, we sought to analyze the dynamic organizational principles within the protein interaction network by studying the characteristics of individual neighborhoods of proteins within the network based on their gene expression as well as protein-protein interaction patterns. By clustering proteins into distinct groups based on their neighborhood gene expression characteristics, we identify several significant trends in the dynamic organization of the protein interaction network. We show that proteins with distinct neighborhood gene expression characteristics are positioned in specific localities in the protein interaction network thereby playing specific roles in the dynamic network connectivity. Remarkably, our analysis reveals a neighborhood characteristic that corresponds to the most centrally located group of proteins within the network. Further, we show that the connectivity pattern displayed by this group is consistent with the notion of “rich club connectivity” in complex networks. Importantly, our findings are largely reproducible in networks constructed using independent and different datasets.  相似文献   

7.
朱晶  沈晓沛  肖会  张杨  王靖  郭政 《生物信息学》2010,8(4):291-294
肺腺癌的发生涉及多个生物学功能通路的扰动,其遗传改变频繁地发生于MAPK信号、p53信号、Wnt信号、细胞周期和mTOR等通路的基因中。解析癌相关通路间的共扰动机制对我们理解癌机制以及寻找诊断标记具有重要意义。因此,本文基于肺腺癌突变谱数据,研究上述癌相关通路在肺腺癌中的共扰动机制。结果发现:在肺腺癌发生的过程中,MAPK信号、p53信号、Wnt信号、细胞周期和mTOR等通路同时被扰动。在不同的癌样本中,一对通路可能通过以下三种方式被共同扰动:(1)在两条通路中的不同基因间的共突变;(2)两条通路相互交叠基因的突变;(3)与两条通路同时具有频繁的互作关系的蛋白质的编码基因的突变。该结果提示,癌相关通路对在不同的样本中可能通过不同的方式被共扰动,这也可能是造成癌症异质性的重要原因之一。  相似文献   

8.
Banerjee A 《Bio Systems》2012,107(3):186-196
Exploring common features and universal qualities shared by a particular class of networks in biological and other domains is one of the important aspects of evolutionary study. In an evolving system, evolutionary mechanism can cause functional changes that forces the system to adapt to new configurations of interaction pattern between the components of that system (e.g. gene duplication and mutation play a vital role for changing the connectivity structure in many biological networks. The evolutionary relation between two systems can be retraced by their structural differences). The eigenvalues of the normalized graph Laplacian not only capture the global properties of a network, but also local structures that are produced by graph evolutions (like motif duplication or joining). The spectrum of this operator carries many qualitative aspects of a graph. Given two networks of different sizes, we propose a method to quantify the topological distance between them based on the contrasting spectrum of normalized graph Laplacian. We find that network architectures are more similar within the same class compared to between classes. We also show that the evolutionary relationships can be retraced by the structural differences using our method. We analyze 43 metabolic networks from different species and mark the prominent separation of three groups: Bacteria, Archaea and Eukarya. This phenomenon is well captured in our findings that support the other cladistic results based on gene content and ribosomal RNA sequences. Our measure to quantify the structural distance between two networks is useful to elucidate evolutionary relationships.  相似文献   

9.
Protein interactions are central to most biological processes. We investigated the dynamics of emergence of the protein interaction network of Saccharomyces cerevisiae by mapping origins of proteins on an evolutionary tree. We demonstrate that evolutionary periods are characterized by distinct connectivity levels of the emerging proteins. We found that the most-connected group of proteins dates to the eukaryotic radiation, and the more ancient group of pre-eukaryotic proteins is less connected. We show that functional classes have different average connectivity levels and that the time of emergence of these functional classes parallels the observed connectivity variation in evolution. We take these findings as evidence that the evolution of function might be the reason for the differences in connectivity throughout evolutionary time. We propose that the understanding of the mechanisms that generate the scale-free protein interaction network, and possibly other biological networks, requires consideration of protein function.  相似文献   

10.
摘要 目的:探究胸腔积液中肺腺癌细胞表皮生长因子受体(epidermalgrowthfactorreceptor,EGFR)突变状态与DNA含量的相关性,以期探究EGFR突变状态是否同肿瘤的恶性程度存在一定关联。方法:选择2015年1月至2020年1月于我院接受EGFR基因检测以及基因定量分析的591例肺腺癌患者为研究对象,按照其是否出现EGFR基因突变将其分为突变组(335例)与非突变组(256例),两组患者的胸腔积液均使用激光图像细胞仪开展DNA含量以及非整倍体峰检测,并开展组间差异性比较。结果:(1)将591例患者按照年龄、性别及是否吸烟等临床特征进行分组对比显示,性别(P=0.034)与吸烟(P=0.007)同肺腺癌患者胸腔积液细胞出现EGFR突变具有一定关联,而年龄因素与是否出现突变无明显相关性(P>0.05);(2)突变组患者的最大DNA指数(DI)、大于5C细胞的平均DI以及大于9C细胞的平均DI均明显高于非突变组,组间差异明显(P<0.05);(3)开展DNA非整倍体细胞峰比较显示突变组在单峰、双峰占比中明显高于非突变组,而无峰占比明显低于非突变组(P<0.05),多峰占比方面两组差异不大(P>0.05)。结论:经研究显示,同未出现EGFR突变的肺腺癌患者相比较,发生EGFR突变的肺腺癌患者明显DI值更高,非整倍体细胞以及非整倍体峰值也呈现异常升高态,这提示EGFR发生突变的肺腺癌患者恶变洗吧的侵袭性更强。  相似文献   

11.
The pathophysiology of episodic memory dysfunction after infarction is not completely understood. It has been suggested that infarctions located anywhere in the brain can induce widespread effects causing disruption of functional networks of the cortical regions. The default mode network, which includes the medial temporal lobe, is a functional network that is associated with episodic memory processing. We investigated whether the default mode network activity is reduced in stroke patients compared to healthy control subjects in the resting state condition. We assessed the whole brain network properties during resting state functional MRI in 21 control subjects and 20 ‘first-ever’ stroke patients. Patients were scanned 9–12 weeks after stroke onset. Stroke lesions were located in various parts of the brain. Independent component analyses were conducted to identify the default mode network and to compare the group differences of the default mode network. Furthermore, region-of-interest based analysis was performed to explore the functional connectivity between the regions of the default mode network. Stroke patients performed significantly worse than control subjects on the delayed recall score on California verbal learning test. We found decreased functional connectivity in the left medial temporal lobe, posterior cingulate and medial prefrontal cortical areas within the default mode network and reduced functional connectivity between these regions in stroke patients compared with controls. There were no significant volumetric differences between the groups. These results demonstrate that connectivity within the default mode network is reduced in ‘first-ever’ stroke patients compared to control subjects. This phenomenon might explain the occurrence of post-stroke cognitive dysfunction in stroke patients.  相似文献   

12.
The centrality-lethality rule, which notes that high-degree nodes in a protein interaction network tend to correspond to proteins that are essential, suggests that the topological prominence of a protein in a protein interaction network may be a good predictor of its biological importance. Even though the correlation between degree and essentiality was confirmed by many independent studies, the reason for this correlation remains illusive. Several hypotheses about putative connections between essentiality of hubs and the topology of protein-protein interaction networks have been proposed, but as we demonstrate, these explanations are not supported by the properties of protein interaction networks. To identify the main topological determinant of essentiality and to provide a biological explanation for the connection between the network topology and essentiality, we performed a rigorous analysis of six variants of the genomewide protein interaction network for Saccharomyces cerevisiae obtained using different techniques. We demonstrated that the majority of hubs are essential due to their involvement in Essential Complex Biological Modules, a group of densely connected proteins with shared biological function that are enriched in essential proteins. Moreover, we rejected two previously proposed explanations for the centrality-lethality rule, one relating the essentiality of hubs to their role in the overall network connectivity and another relying on the recently published essential protein interactions model.  相似文献   

13.
Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain's modular organization and assign each region to a "meta-modular" group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer's dementia and 56 cognitively normal elderly subjects matched 1:2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer's disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer's dementia.  相似文献   

14.
The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions.  相似文献   

15.
Currently, there are few studies on patients with nonsmoking lung adenocarcinoma, and the pathogenesis is still unclear. The role of DNA methylation in the pathogenesis of cancer is gradually being recognized. The purpose of this study was to determine the abnormal methylation genes and pathways involved in nonsmoking lung adenocarcinoma patients. Gene expression microarray data (GSE10072, GSE43458) and gene methylation microarray data (GSE62948) were downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes were obtained through GEO2R. Next, we analyzed the function and enrichment of the selected genes using Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction (PPI) networks were constructed using the Search Tool for the Retrieval of Interacting Genes database and visualized in Cytoscape. Finally, we performed module analysis of the PPI network using Molecular Complex Detection. And we obtained 10 hub genes by Cytoscape Centiscape. We analyzed the independent prognostic value of each hub gene in nonsmoking nonsmall cell lung cancer patients through Kaplan-Meier plotter. Seven hub genes (CXCL12, CDH1, CASP3, CREB1, COL1A1, ERBB2, and ENO2) were closely related to the overall survival time. This study provides an effective bioinformatics basis for further understanding the pathogenesis and prognosis of nonsmoking lung adenocarcinoma patients. Hub genes with prognostic value could be selected as effective biomarkers for timely diagnosis and prognostic of nonsmoking lung adenocarcinoma patients.  相似文献   

16.
Synaptotagmins are a class of proteins that play an important role in the secretion of neurotransmitters by synaptic vesicles. However, recent studies have shown that members of this family also have a certain function in the development of tumors. In this study, we first identified through The Cancer Genome Atlas data analyzed that a novel synaptotagmin, SYT13, was closely related to the prognosis of lung adenocarcinoma, but was not significantly correlated with the prognosis of lung squamous cell carcinoma. Then we knocked down the expression of SYT13 gene in lung adenocarcinoma cell lines A549 and H1299, and successfully induced decreased proliferation and clonality of lung adenocarcinoma cell lines, and observed cell cycle arrest and apoptosis enhancement in both cell lines. In addition, we detected the migration ability of SYT13 knockdown lung adenocarcinoma cell lines by the cell scratch test and the transwell test. Interestingly, there was a decreased migration ability of SYT13 knockdown in H1299 cells even though there was no significant difference in the migration of A549 cells. These results demonstrate that SYT13 plays an important role in the development of lung adenocarcinoma, which deepens our understanding of the mechanism of lung adenocarcinoma development and provides new possibilities for targeted therapy of lung adenocarcinoma.  相似文献   

17.
Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.  相似文献   

18.
Plant protein-protein interaction networks have not been identified by large-scale experiments. In order to better understand the protein interactions in rice, the Predicted Rice Interactome Network (PRIN; http://bis.zju.edu.cn/prin/) presented 76,585 predicted interactions involving 5,049 rice proteins. After mapping genomic features of rice (GO annotation, subcellular localization prediction, and gene expression), we found that a well-annotated and biologically significant network is rich enough to capture many significant functional linkages within higher-order biological systems, such as pathways and biological processes. Furthermore, we took MADS-box domain-containing proteins and circadian rhythm signaling pathways as examples to demonstrate that functional protein complexes and biological pathways could be effectively expanded in our predicted network. The expanded molecular network in PRIN has considerably improved the capability of these analyses to integrate existing knowledge and provide novel insights into the function and coordination of genes and gene networks.  相似文献   

19.
Gene expression is a result of the interplay between the structure, type, kinetics, and specificity of gene regulatory interactions, whose diversity gives rise to the variety of life forms. As the dynamic behavior of gene regulatory networks depends on their structure, here we attempt to determine structural reasons which, despite the similarities in global network properties, may explain the large differences in organismal complexity. We demonstrate that the algebraic connectivity, the smallest non-trivial eigenvalue of the Laplacian, of the directed gene regulatory networks decreases with the increase of organismal complexity, and may therefore explain the difference between the variety of analyzed regulatory networks. In addition, our results point out that, for the species considered in this study, evolution favours decreasing concentration of strategically positioned feed forward loops, so that the network as a whole can increase the specificity towards changing environments. Moreover, contrary to the existing results, we show that the average degree, the length of the longest cascade, and the average cascade length of gene regulatory networks cannot recover the evolutionary relationships between organisms. Whereas the dynamical properties of special subnetworks are relatively well understood, there is still limited knowledge about the evolutionary reasons for the already identified design principles pertaining to these special subnetworks, underlying the global quantitative features of gene regulatory networks of different organisms. The behavior of the algebraic connectivity, which we show valid on gene regulatory networks extracted from curated databases, can serve as an additional evolutionary principle of organism-specific regulatory networks.  相似文献   

20.
Actin networks are essential for living cells to move, reproduce, and sense their environments. The dynamic and rheological behavior of actin networks is modulated by actin-binding proteins such as α-actinin, Arp2/3, and myosin. There is experimental evidence that actin-binding proteins modulate the cooperation of myosin motors by connecting the actin network. In this work, we present an analytical mean field model, using the Flory-Stockmayer theory of gelation, to understand how different actin-binding proteins change the connectivity of the actin filaments as the networks are formed. We follow the kinetics of the networks and estimate the concentrations of actin-binding proteins that are needed to reach connectivity percolation as well as to reach rigidity percolation. We find that Arp2/3 increases the actomyosin connectivity in the network in a non-monotonic way. We also describe how changing the connectivity of actomyosin networks modulates the ability of motors to exert forces, leading to three possible phases of the networks with distinctive dynamical characteristics: a sol phase, a gel phase, and an active phase. Thus, changes in the concentration and activity of actin-binding proteins in cells lead to a phase transition of the actin network, allowing the cells to perform active contraction and change their rheological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号