首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains the leading cause of mortality from a single infectious agent. Each year around 9 million individuals newly develop active TB disease, and over 2 billion individuals are latently infected with M.tb worldwide, thus being at risk of developing TB reactivation disease later in life. The underlying mechanisms and pathways of protection against TB in humans, as well as the dynamics of the host response to M.tb infection, are incompletely understood. We carried out whole-genome expression profiling on a cohort of TB patients longitudinally sampled along 3 time-points: during active infection, during treatment, and after completion of curative treatment. We identified molecular signatures involving the upregulation of type-1 interferon (α/β) mediated signaling and chronic inflammation during active TB disease in an Indonesian population, in line with results from two recent studies in ethnically and epidemiologically different populations in Europe and South Africa. Expression profiles were captured in neutrophil-depleted blood samples, indicating a major contribution of lymphocytes and myeloid cells. Expression of type-1 interferon (α/β) genes mediated was also upregulated in the lungs of M.tb infected mice and in infected human macrophages. In patients, the regulated gene expression-signature normalized during treatment, including the type-1 interferon mediated signaling and a concurrent opposite regulation of interferon-gamma. Further analysis revealed IL15RA, UBE2L6 and GBP4 as molecules involved in the type-I interferon response in all three experimental models. Our data is highly suggestive that the innate immune type-I interferon signaling cascade could be used as a quantitative tool for monitoring active TB disease, and provide evidence that components of the patient’s blood gene expression signature bear similarities to the pulmonary and macrophage response to mycobacterial infection.  相似文献   

3.
The existing vaccine against tuberculosis (M. bovis BCG) exerts some protection against the extrapulmonary forms of the disease, particularly in young children, but is not very effective against the pulmonary form of TB, which often results from the reactivation of a latent M. tuberculosis (M.tb)infection. Among the new approaches in TB vaccine development, live attenuated M.tb mutants are a promising new avenue. Here we report on the vaccine potential of two highly attenuated M.tb mutants, MGM1991 and M.tbhma::hyg (HMA), lacking all oxygenated mycolates in their cell wall. In C57BL/6 mice, stronger Th1 (IFN-γ, IL-2 and TNF-α) and IL-17 responses could be induced following subcutaneous vaccination with either of the two mutants, than following vaccination with M. bovis BCG. Significantly more mycobacteria specific IFN-γ producing CD4+ and particularly CD8+ T cells could be detected by intracellular cytokine staining in mice vaccinated with the M.tb mutants. Finally, vaccination with either of the two mutants conferred stronger protection against intratracheal M.tb challenge than vaccination with BCG, as indicated by reduced bacterial replication in lungs at 4 to 12 weeks after challenge. Protection against M. tb dissemination, as indicated by reduced bacterial numbers in spleen, was comparable for both mutants to protection conferred by BCG.  相似文献   

4.
This study aimed to examine miR‐140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR‐140 in host‐bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR‐140 expression and relevant mRNA expression were detected by quantitative real‐time PCR (qRT‐PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR‐140 and the 3′ untranslated region (UTR) of tumour necrosis factor receptor‐associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR‐140 was up‐regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP‐1 and U937 cells with M tb infection. Overexpression of miR‐140 promoted M tb survival; on the other hand, miR‐140 knockdown attenuated M tb survival. The pro‐inflammatory cytokines including interleukin 6, tumour necrosis‐α, interleukin‐1β and interferon‐γ were enhanced by M tb infection in THP‐1 and U937 cells. MiR‐140 overexpression reduced these pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection; while knockdown of miR‐140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR‐140 and was negatively modulated by miR‐140. TRAF6 overexpression increased the pro‐inflammatory cytokines levels and partially restored the suppressive effects of miR‐140 overexpression on pro‐inflammatory cytokines levels in THP‐1 and U937 cells with M tb infection. In conclusion, our results implied that miR‐140 promoted M tb survival and reduced the pro‐inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.  相似文献   

5.
Recent studies have suggested that antithrombin (AT) could act as a significant physiologic regulator of FVIIa. However, in vitro studies showed that AT could inhibit FVIIa effectively only when it was bound to tissue factor (TF). Circulating blood is known to contain only traces of TF, at best. FVIIa also binds endothelial cell protein C receptor (EPCR), but the role of EPCR on FVIIa inactivation by AT is unknown. The present study was designed to investigate the role of TF and EPCR in inactivation of FVIIa by AT in vivo. Low human TF mice (low TF, ∼1% expression of the mouse TF level) and high human TF mice (HTF, ∼100% of the mouse TF level) were injected with human rFVIIa (120 µg kg−1 body weight) via the tail vein. At varying time intervals following rFVIIa administration, blood was collected to measure FVIIa-AT complex and rFVIIa antigen levels in the plasma. Despite the large difference in TF expression in the mice, HTF mice generated only 40–50% more of FVIIa-AT complex as compared to low TF mice. Increasing the concentration of TF in vivo in HTF mice by LPS injection increased the levels of FVIIa-AT complexes by about 25%. No significant differences were found in FVIIa-AT levels among wild-type, EPCR-deficient, and EPCR-overexpressing mice. The levels of FVIIa-AT complex formed in vitro and ex vivo were much lower than that was found in vivo. In summary, our results suggest that traces of TF that may be present in circulating blood or extravascular TF that is transiently exposed during normal vessel damage contributes to inactivation of FVIIa by AT in circulation. However, TF’s role in AT inactivation of FVIIa appears to be minor and other factor(s) present in plasma, on blood cells or vascular endothelium may play a predominant role in this process.  相似文献   

6.
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.  相似文献   

7.

Background

IFN-γ is presently the only soluble immunological marker used to help diagnose latent Mycobacterium tuberculosis (M.tb) infection. However, IFN-γ is not available to distinguish latent from active TB infection. Moreover, extrapulmonary tuberculosis, such as tuberculous pleurisy, cannot be properly diagnosed by IFN-γ release assay. As a result, other disease- or infection-related immunological biomarkers that would be more effective need to be screened and identified.

Methodology

A panel of 41 soluble immunological molecules (17 cytokines and 24 chemokines) was tested using Luminex liquid array-based multiplexed immunoassays. Samples, including plasma and pleural effusions, from healthy donors (HD, n = 12) or patients with latent tuberculosis infection (LTBI, n = 20), pulmonary tuberculosis (TB, n = 12), tuberculous pleurisy (TP, n = 15) or lung cancer (LC, n = 15) were collected and screened for soluble markers. Peripheral blood mononuclear cells (PBMCs) and pleural fluid mononuclear cells (PFMCs) were also isolated to investigate antigen-specific immune factors.

Principal Findings

For the 41 examined factors, our results indicated that three patterns were closely associated with infection and disease. (1) Significantly elevated plasma levels of IL-2, IP-10, CXCL11 and CXCL12 were present in both patients with tuberculosis and in a sub-group participant with latent tuberculosis infection who showed a higher level of IFN-γ producing cells by ELISPOT assay compared with other latently infected individuals. (2) IL-6 and IL-9 were only significantly increased in plasma from active TB patients, and the two factors were consistently highly secreted after M.tb antigen stimulation. (3) When patients developed tuberculous pleurisy, CCL1, CCL21 and IL-6 were specifically increased in the pleural effusions. In particular, these three factors were consistently highly secreted by pleural fluid mononuclear cells following M.tb-specific antigen stimulation. In conclusion, our data imply that the specific secretion of soluble immunological factors, in addition to IFN-γ, may be used to evaluate M.tb infection and tuberculosis disease.  相似文献   

8.
Microparticles (MPs) are small membranous particles (100–1000 nm) released under normal steady‐state conditions and are thought to provide a communication network between host cells. Previous studies demonstrated that Mycobacterium tuberculosis (M. tb) infection of macrophages increased the release of MPs, and these MPs induced a proinflammatory response from uninfected macrophages in vitro and in vivo following their transfer into uninfected mice. To determine how M. tb infection modulates the protein composition of the MPs, and if this contributes to their proinflammatory properties, we compared the proteomes of MPs derived from M. tb‐infected (TBinf‐MP) and uninfected human THP‐1 monocytic cells. MP proteins were analyzed by GeLC‐MS/MS with spectral counting revealing 68 proteins with statistically significant differential abundances. The 42 proteins increased in abundance in TBinf‐MPs included proteins associated with immune function (7), lysosomal/endosomal maturation (4), vesicular formation (12), nucleosome proteins (4), and antigen processing (9). Prominent among these were the type I interferon inducible proteins, ISG15, IFIT1, IFIT2, and IFIT3. Exposure of uninfected THP‐1 cells to TBinf‐MPs induced increased gene expression of isg15, ifit1, ifit2, and ifit3 and the release of proinflammatory cytokines. These proteins may regulate the proinflammatory potential of the MPs and provide candidate biomarkers for M. tb infection.  相似文献   

9.
Tuberculosis (TB) remains an eminent global burden with one third of the world’s population latently infected with Mycobacterium tuberculosis (M. tb). Individuals with compromised immune systems are especially vulnerable to M. tb infection. In fact, individuals with Type 2 Diabetes Mellitus (T2DM) are two to three times more susceptible to TB than those without T2DM. In this study, we report that individuals with T2DM have lower levels of glutathione (GSH) due to compromised levels of GSH synthesis and metabolism enzymes. Transforming growth factor beta (TGF-β), a cytokine that is known to decrease the expression of the catalytic subunit of glutamine-cysteine ligase (GCLC) was found in increased levels in the plasma samples from individuals with T2DM, explaining the possible underlying mechanism that is responsible for decreased levels of GSH in individuals with T2DM. Moreover, increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-17 (IL-17) were observed in plasma samples isolated from individuals with T2DM. Increased levels of IL-6 and IL-17 was accompanied by enhanced production of free radicals further indicating an alternative mechanism for the decreased levels of GSH in individuals with T2DM. Augmenting the levels of GSH in macrophages isolated from individuals with T2DM resulted in improved control of M. tb infection. Furthermore, cytokines that are responsible for controlling M. tb infection at the cellular and granuloma level such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), were found to be compromised in plasma samples isolated from individuals with T2DM. On the other hand, interleukin-10 (IL-10), an immunosuppressive cytokine was increased in plasma samples isolated from individuals with T2DM. Overall, these findings suggest that lower levels of GSH in individuals with T2DM lead to their increased susceptibility to M. tb infection.  相似文献   

10.
The role of macrophage-inducible C-type lectin Mincle in lung innate immunity against mycobacterial infection is incompletely defined. In this study, we show that wild-type (WT) mice responded with a delayed Mincle induction on resident alveolar macrophages and newly immigrating exudate macrophages to infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG), peaking by days 14-21 posttreatment. As compared with WT mice, Mincle knockout (KO) mice exhibited decreased proinflammatory mediator responses and leukocyte recruitment upon M. bovis BCG challenge, and they demonstrated increased mycobacterial loads in pulmonary and extrapulmonary organ systems. Secondary mycobacterial infection on day 14 after primary BCG challenge led to increased cytokine gene expression in sorted alveolar macrophages of WT mice, but not Mincle KO mice, resulting in substantially reduced alveolar neutrophil recruitment and increased mycobacterial loads in the lungs of Mincle KO mice. Collectively, these data show that WT mice respond with a relatively late Mincle expression on lung sentinel cells to M. bovis BCG infection. Moreover, M. bovis BCG-induced upregulation of C-type lectin Mincle on professional phagocytes critically shapes antimycobacterial responses in both pulmonary and extrapulmonary organ systems of mice, which may be important for elucidating the role of Mincle in the control of mycobacterial dissemination in mice.  相似文献   

11.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

12.
13.

Background

Recombinant adenovirus-vectored (Ad) tuberculosis (TB) vaccine platform has demonstrated great potential to be used either as a stand-alone or a boost vaccine in murine models. However, Ad TB vaccine remains to be evaluated in a more relevant and sensitive guinea pig model of pulmonary TB. Many vaccine candidates shown to be effective in murine models have subsequently failed to pass the test in guinea pig models.

Methods and Findings

Specific pathogen-free guinea pigs were immunized with BCG, AdAg85A intranasally (i.n), AdAg85A intramuscularly (i.m), BCG boosted with AdAg85A i.n, BCG boosted with AdAg85A i.m, or treated only with saline. The animals were then infected by a low-dose aerosol of M. tuberculosis (M.tb). At the specified times, the animals were sacrificed and the levels of infection in the lung and spleen were assessed. In separate studies, the long-term disease outcome of infected animals was monitored until the termination of this study. Immunization with Ad vaccine alone had minimal beneficial effects. Immunization with BCG alone and BCG prime-Ad vaccine boost regimens significantly reduced the level of M.tb infection in the tissues to a similar extent. However, while BCG alone prolonged the survival of infected guinea pigs, the majority of BCG-immunized animals succumbed by 53 weeks post-M.tb challenge. In contrast, intranasal or intramuscular Ad vaccine boosting of BCG-primed animals markedly improved the survival rate with 60% of BCG/Ad i.n- and 40% of BCG/Ad i.m-immunized guinea pigs still surviving by 74 weeks post-aerosol challenge.

Conclusions

Boosting, particularly via the intranasal mucosal route, with AdAg85A vaccine is able to significantly enhance the long-term survival of BCG-primed guinea pigs following pulmonary M.tb challenge. Our results thus support further evaluation of this viral-vectored TB vaccine in clinical trials.  相似文献   

14.
Our previous result indicated that memory-like human natural killer (NK) cells from TB pleural fluid cells (PFCs) produced large amounts of IFN-γ in response to Bacille Calmette Guerin (BCG). Furthermore, recent studies have shown that human lymphoid tissues harbored a unique NK cell subset that specialized in production of interleukin (IL)-22, a proinflammatory cytokine that mediates host defense against pathogens. Yet little information was available with regard to the properties of IL-22 production by memory-like human NK cells. In the present study, we found that cytokines IL-15 induced and IL-12 enhanced the levels of IL-22 by NK cells from TB PFCs. In addition, IL-22 but not IL-17 was produced by NK cells from PFCs in response to BCG and M.tb-related Ags. More importantly, the subset of specific IL-22-producing NK cells were distinct from IFN-γ-producing NK cells in PFCs. CD45RO+ or CD45RO- NK cells were sorted, co-cultured with autologous monocytes and stimulated with BCG for the production of IL-22. The result demonstrated that CD45RO+ but not CD45RO- NK cells produced significantly higher level of IL-22. Anti-IL-12Rβ1 mAbs (2B10) partially inhibit the expression of IL-22 by NK cells under the culture with BCG. Consistently, BCG specific IL-22-producing NK cells from PFCs expressed CD45ROhighNKG2Dhighgranzyme Bhigh. In conclusion, our data demonstrated that memory-like antigen-specific CD45RO+ NK cells might participate in the recall immune response for M. tb infection via producing IL-22, which display a critical role to fight against M. tb.  相似文献   

15.
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio‐synthetical target for anti‐tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin‐9 and exacerbates mycobacterial infection. Administration of AG‐specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb‐infected mice or Mycobacterium marinum‐infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin‐9 with high affinity, and galectin‐9 associates with transforming growth factor β‐activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal‐regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin‐9 or inhibition of MMPs blocks AG‐induced pathological impairments in the lung, and the AG‐galectin‐9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin‐9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.  相似文献   

16.

Objective

Early diagnosis of infectious cases and treatment of tuberculosis (TB) are important strategies for reducing the incidence of this disease. Unfortunately, traditional TB diagnostic methods are time-consuming and often unreliable. This study compared the accuracy and reliability of the tuberculin skin test (TST) and interferon (IFN)-γ-based assay (IGRA) for the diagnosis of active pulmonary TB Polish cases that could or could not be confirmed by M. tuberculosis (M.tb) culture.

Methods

In total, 126 adult patients with clinically active TB or non-mycobacterial, community-acquired lung diseases (NMLD) hospitalised at the Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn, Poland were enrolled in the present study. Sensitivity, specificity, positive predicted value (PPV), negative predicted value (NPV), and analytic accuracy (Acc) of TST and IGRA testing for the diagnosis of culture-positive and culture-negative TB patients were calculated. The quantities of IFN-γ produced in the response to M.tb specific antigens (TB Ag – Nil) in the cultures of blood from patients with active TB and NMLD patients were also analysed.

Results

The IGRA sensitivity in culture-positive and culture-negative TB patients was similar, measuring 65.1% and 55.6%, respectively. The sensitivity of TST did not differ from the parameters designated for IGRA, measuring 55.8% in culture-positive and 64.9% in culture-negative TB. The sensitivity of TST and IGRA was age-dependent and decreased significantly with the age of the patients. No differences in the frequency or intensity of M.tb-stimulated IFN-γ production, as assessed by IGRA testing between culture-positive and culture-negative TB were noticed. Significantly lower concentrations of IFN-γ were observed in patients with advanced TB forms compared with those with mild or moderate TB pathologies.

Conclusions

Our results do not show that a combination of IGRA and TST might be a step forward in the diagnosis of culture-negative TB cases. However, M. tuberculosis-stimulated IFN-γ levels might help to assess the extent of pulmonary TB lesions.  相似文献   

17.
The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test χ2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models.A single biomarker measuring M.tb-specific T cell activation yielded excellent diagnostic potential to distinguish between recent and remote M.tb infection.  相似文献   

18.
C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.  相似文献   

19.
Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb) is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e) and fms-like tyrosine kinase 3 ligand (FL) genes (termed Esat-6/3e-FL), and was enveloped with chitosan (CS) nanoparticles (nano-chitosan). The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL) was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.  相似文献   

20.
Pulmonary tuberculosis (TB), caused by the intracellular bacteria Mycobacterium tuberculosis, is a worldwide disease that continues to kill more than 1.5 million people every year worldwide. The accumulation of lymphocytes mediates the formation of the tubercle granuloma in the lung and is crucial for host protection against M.tuberculosis infection. However, paradoxically the tubercle granuloma is also the basis for the immunopathology associated with the disease and very little is known about the regulatory mechanisms that constrain the inflammation associated with the granulomas. Lipocalin 2 (Lcn2) is a member of the lipocalin family of proteins and binds to bacterial siderophores thereby sequestering iron required for bacterial growth. Thus far, it is not known whether Lcn2 plays a role in the inflammatory response to mycobacterial pulmonary infections. In the present study, using models of acute and chronic mycobacterial pulmonary infections, we reveal a novel role for Lcn2 in constraining T cell lymphocytic accumulation and inflammation by inhibiting inflammatory chemokines, such as CXCL9. In contrast, Lcn2 promotes neutrophil recruitment during mycobacterial pulmonary infection, by inducing G-CSF and KC in alveolar macrophages. Importantly, despite a common role for Lcn2 in regulating chemokines during mycobacterial pulmonary infections, Lcn2 deficient mice are more susceptible to acute M.bovis BCG, but not low dose M.tuberculosis pulmonary infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号