首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacterial secondary transporters of the DctA family mediate ion-coupled uptake of C4-dicarboxylates. Here, we have expressed the DctA homologue from Bacillus subtilis in the Gram-positive bacterium Lactococcus lactis. Transport of dicarboxylates in vitro in isolated membrane vesicles was assayed. We determined the substrate specificity, the type of cotransported ions, the electrogenic nature of transport, and the pH and temperature dependence patterns. DctA was found to catalyze proton-coupled symport of the four C4-dicarboxylates from the Krebs cycle (succinate, fumurate, malate, and oxaloacetate) but not of other mono- and dicarboxylates. Because (i) succinate-proton symport was electrogenic (stimulated by an internal negative membrane potential) and (ii) the divalent anionic form of succinate was recognized by DctA, at least three protons must be cotransported with succinate. The results were interpreted in the light of the crystal structure of the homologous aspartate transporter GltPh from Pyrococcus horikoshii.The DctA family is one of several diverse families of secondary transporters that catalyze the uptake of C4-dicarboxylates from the Krebs cycle in bacteria (16, 27). In Escherichia coli, DctA mediates the uptake of succinate, fumurate, and malate under aerobic conditions; genomic disruption of dctA in E. coli prevents growth with malate or fumarate as the sole carbon source, and the mutant grows poorly on succinate (5). Similarly, a dctA knockout mutant of Bacillus subtilis cannot grow with succinate or fumarate as the sole carbon source (1). DctA plays a major role in the symbiotic relationship between nitrogen-fixing rhizobia (43) and root nodule-forming plants (30, 37, 38). Transport assays with Sinorhizobium meliloti cells showed previously that in addition to succinate, malate, and fumarate, orotate is transported and that a range of other substrates such as succinamic acid and succinamide may be transported, because they inhibit the transport of orotate (42). In Corynebacterium glutamicum, malate transport by DctA is inhibited by α-ketoglutarate, oxaloacetate, and glyoxylate, indicating that these compounds may be substrates also (41).DctA transporters belong to a large family of secondary transporters (the DAACS [dicarboxylate/amino acid:cation symporter] family), which also comprises well-characterized glutamate/aspartate transporters and neutral amino acid transporters (32, 33). While DctA-type dicarboxylate transporters are found only in bacteria, glutamate/aspartate transporters of the DAACS family are found both in prokaryotes (e.g., GltT in Bacillus stearothermophilus, GltP in E. coli, and GltPh in Pyrococcus horikoshii [2, 7, 34]) and in higher eukarya, where they play a pivotal role in the reuptake of the excitatory neurotransmitter glutamate from the synaptic cleft (4). Neutral amino acid (alanine, serine, and threonine) transporters are found in mammals (see, e.g., references 36 and 44) as well as bacteria (17).Secondary transporters of the DAACS family use (electro)chemical gradients of cations across the membrane to drive transport. The type of cotransported ions varies among family members: eukaryotic glutamate transporters couple the transport of glutamate to the symport of one proton and three sodium ions and the antiport of one potassium ion (24, 45). Bacterial and archaeal glutamate transporters utilize either sodium ions or protons for symport (2) and are independent of potassium ions (28, 31). The bacterial and mammalian neutral amino acid transporters are sodium ion coupled. Glutamate/aspartate transporters and bacterial serine/threonine transporters (SstTs) are electrogenic, but mammalian neutral amino acid transporters are obligate electroneutral amino acid antiporters (44).Insight into the structure-function relationships of the DAACS family members has greatly increased since crystal structures of the P. horikoshii aspartate transporter GltPh have been determined (2, 29, 40). The protein consists of eight membrane-spanning helices and two reentrant regions (helical hairpins HP1 and HP2) (40). The C-terminal part of the protein (helices 7 and 8 and HP1 and HP2) is most strongly conserved with respect to other family members and binds the substrate and cotransported ions, with HP1 and HP2 functioning as lids that allow alternating access to the substrate- and ion-binding sites from either side of the membrane (3, 29). GltPh forms a homotrimeric complex in which each protomer functions independently of the other subunits (11, 12, 18, 19, 23). The fold and oligomeric state are likely to be conserved throughout the family.Whereas the transport mechanisms of bacterial glutamate and neutral amino acid transporters of the DAACS family have been studied extensively in vitro, the C4-dicarboxylate transporters of the DAACS family (DctA proteins) have been studied using whole cells only. To fully characterize these transporters, in vitro activity assays using either membrane vesicles or proteoliposomes containing purified protein are necessary. In such assays, the internal and external buffer compositions can be controlled, thus allowing manipulation of the chemical ion gradients and the electrical potential across the membrane. Here, we present the first biochemical characterization of a DctA family member in membrane vesicles. We have studied the DctA homologue from B. subtilis, which is annotated as DctP (1) but which we propose to rename DctA to reflect the homology to other DctA proteins. B. subtilis DctA (DctABs) has 30 to 32% sequence identity to the aspartate transporter GltPh and human excitatory amino acid transporter (EAAT) family members, over 40% sequence identity to the characterized bacterial glutamate transporters from E. coli and B. stearothermophilus, and 41 and 56% identity to DctA homologues from C. glutamicum and E. coli, respectively. We determined the substrate specificity of DctABs, the type of cotransported ions, the electrogenic nature of transport, and the pH and temperature dependence patterns.  相似文献   

3.
DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5′-3′ helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.  相似文献   

4.
Eleven succinate-accumulating mutants of Bacillus subtilis have been mapped by transformation and transduction crosses and characterized with respect to activities of citric acid cycle enzymes. These mutants could be divided into three genetic groups. Nine of the mutants were found to map between argA and leu in the citF locus. A second group was located between lys-1 and trpC2 and the third group could not be located on the B. subtilis chromosome in extensive transduction crosses. All of the citF mutants lack detectable succinate dehydrogenase activity, whereas both of the other groups show a reduced level of this enzyme. In addition, most of the mutants in the citF locus lack cytochrome a, whereas the level of this cytochrome is normal in the other two groups. A procedure has been devised for the solubilization of the succinate dehydrogenase from the membrane of B. subtilis with the non-ionic detergent Brij 58. Some properties of the soluble and bound forms of succinate dehydrogenase are described.  相似文献   

5.
Characterization of Bacillus subtilis bacteriophages   总被引:9,自引:1,他引:8  
Brodetsky, Anna M. (University of California, Los Angeles), and W. R. Romig. Characterization of Bacillus subtilis bacteriophages. J. Bacteriol. 90:1655-1663. 1965.-A group of six phages, SP5, SP6, SP7, SP8, SP9, and SP13, which use the Marburg strain of Bacillus subtilis as host was characterized. These phages, referred to as group 1, were examined for the following properties: host range, plaque morphology, stability, adsorption kinetics, one-step growth characteristics, calcium requirements, serum neutralization, thermal inactivation, and inactivation by ultraviolet irradiation. Five unrelated B. subtilis phages, SP3, SP10, PBS1, SP alpha, and SP beta, were included in the studies. When first isolated, none of the group 1 phages was able to replicate efficiently on B. subtilis SB19, a mutant of the "transforming" B. subtilis 168. Host range mutants capable of growth in SB19 were isolated for all of the group 1 phages except SP13, and are designated the "star" phages (SP5* through SP9*). For characterization, SB19 was used as host for the star phages, and another B. subtilis mutant, 168B, was host for SP13.  相似文献   

6.
7.
RecQ家族解旋酶是DNA解旋酶中高度保守的一个重要家族,在维持染色体的稳定性中起着重要的作用.人类RecQ家族解旋酶突变会导致几种与癌症有关的疾病.本研究旨在诱导大肠杆菌RecQ解旋酶体外表达,并应用生物化学和生物物理学技术研究大肠杆菌RecQ解旋酶的生物学活性. 体外诱导表达获得纯度达90% 以上并具有高活性的大肠杆菌重组RecQ解旋酶,其可溶性好;经生物学活性分析显示具有DNA结合活性、ATP依赖的DNA解链活性、DNA依赖的ATP酶活性. 较之双链DNA(dsDNA),大肠杆菌RecQ解旋酶更容易与单链DNA(ssDNA)结合( P<0.01 ),但与长度不同的dsDNA的结合特性有差异(P<0.01)而与ssDNA没有差异(P>0.05);大肠杆菌RecQ解旋酶对3种dsDNA的解链速率不同(P<0.05);大肠杆菌RecQ解旋酶的ATP酶活性与辅助因子ssDNA长度也呈正相关(P<0.01). 这些研究结果将有助于阐明大肠杆菌RecQ解旋酶的分子作用机制,并为研究RecQ解旋酶家族其它成员的结构与功能提供帮助.  相似文献   

8.
Characterization of Bacillus subtilis recombinational pathways   总被引:6,自引:3,他引:3       下载免费PDF全文
Recombination in Bacillus subtilis requires the products of numerous rec loci. To dissect the various mechanisms which may be involved in genetic recombination, we constructed a series of isogenic strains containing more than one mutant rec allele. On the basis of their impairment in genetic exchange, the various loci (represented by specific rec alleles) were classified into different epistatic groups. Group alpha consists of rec genes represented by recB, recD, recF, recG, recL, and recR mutations, while group beta comprises the addA and addB mutations. Group gamma consists of the recH and recP mutations. These results suggest that B. subtilis has multiple pathways for genetic recombination and that the products of the genes within the alpha, beta, and gamma epistatic groups are involved in these alternative recombination pathways. The RecA protein is required in all three pathways of intermolecular recombination.  相似文献   

9.
10.
b-丙氨酸是一种重要的医药化工原料,目前主要依靠化学法进行生产。探寻更为环保和高效的生物生产法是未来研究的一个方向。L-天冬氨酸a脱羧酶 (PanD) 能特异地脱去L-天冬氨酸的a羧基,生成b-丙氨酸。本文比较了3种分别来源于大肠杆菌、谷氨酸棒状杆菌及枯草芽胞杆菌的PanD比酶活 (分别为0.98、7.52和8.4 U/mg)。后两者的最适pH均为6.5,最适反应温度分别为65 ℃及60 ℃。与目前研究最多的来源于大肠杆菌和谷氨酸棒状杆菌的PanD相比,来源于枯草芽胞杆菌的PanD具有更好的活性和热稳定性,具有更强的工业应用潜力。同时,本文对该酶特有的翻译后自剪切及机理性失活现象进行了分析和讨论。  相似文献   

11.
两株枯草芽孢杆菌的噬菌体   总被引:2,自引:1,他引:1  
从三门峡酶制剂厂分离到与过去形态不同的两种噬菌体BS3l和BS32。BS31有收缩尾鞘,头部为六边形;BS32有复杂的短尾,形态与φ29相似,寄主范围窄且有差异,用限制酶分析,噬菌体DNA的分子量分别为62kb和17kb。根据解链温度计算噬菌体DNA的G十c含量分别为45.7mol%和40.7mol%。两株噬菌体的结构蛋白经SDS聚丙烯酰胺凝胶电沫测定,BS3l有2条主带,10条次带;BS32有3条主带和6条次带。  相似文献   

12.
13.
An isogenic set of "prophage-free," DNA repair-proficient and -deficient strains of Bacillus subtilis were characterized phenotypically. The mutant strains were provisionally classified into four categories on the basis of their sensitivity to DNA-damaging agents, their ability to release phage after lysogenization followed by damage to chromosomal DNA, and their impairment in genetic exchange. The properties of double Rec- mutants showed that recF and addA belong to different epistatic groups, whereas recF, recL, and recH fall into the same group. More than one pathway for genetic exchange might be operative in B. subtilis.  相似文献   

14.
脂蛋白(a)受体与LDL受体关系的研究   总被引:4,自引:0,他引:4  
本文用蛋白质免疫印迹方法研究了猕猴肝细胞膜上脂蛋白(a)受体和LDL受体。探讨当前尚有争议的脂蛋白(a)与LDL的代谢是经同一受体途径还是不同受体途径。实验结果显示:脂蛋白(a)受体(-300kD0与LDL受体(-185kD)是分子量不同的两种受体。该结果揭示脂蛋白(a)有其自身的代谢途径。  相似文献   

15.
Characterization of recF suppressors in Bacillus subtilis   总被引:1,自引:0,他引:1  
J C Alonso  G Lüder 《Biochimie》1991,73(2-3):277-280
A recF mutation renders Bacillus subtilis cells very sensitive to DNA-damaging agents. Such a recF defect is partially suppressed either by the presence of the recA73 mutation or by the presence of a plasmid-borne, heterologous, single-stranded DNA-binding (ssb) protein gene. Plasmids carrying ssb genes also suppressed the recR and recL defects. Our results suggest that suppression occurs by increasing recombinational repair. The effect of the suppressors may be at the level of induction of the SOS response.  相似文献   

16.
嗜热脂肪芽孢杆菌DNA解链蛋白1的纯化及性质   总被引:1,自引:1,他引:0  
以嗜热脂肪芽孢杆菌为材料,通过PolyminP沉淀,硫酸铵分级及Phenyl-Sepharose,DEAE纤维素,磷酸纤维素,FPLC MonoQ,FPLC Superose12等柱层析,得到部分纯化的DNA解链蛋白1。BstH1具有依赖DNA和Mg^2+的ATP酶活力,不同类型的核酸对BstH1的ATP酶活力的促进作用不同。  相似文献   

17.
The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50–65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100 % of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process.  相似文献   

18.
Abstract Higher regeneration mutants were isolated from Bacillus subtilis . Protoplasts from two out of four mutants regenerated at a 100% frequency on a semi-synthetic hypertonic medium. They conferred less autolytic productivity, and a revertant regained the parental levels of regeneration frequency and autolytic activities. This mutation ( rgn -1) expressed the other pleiotropic properties, i.e., nonmotility, phage PBS1 resistance and different cell morphology.  相似文献   

19.
A purification procedure described previously resulting in electrophoretically pure Bacillus subtilis ATP-dependent DNAse has now been modified by adding a fractionation stage with Polymin P to permit large-scale isolation of the enzyme. It has been found that the enzyme molecule (Mr = 300000) consists of two large subunits with Mr 155000 and 140000. The purified enzyme has three activities: (1) DNAse on linear single-stranded and double-stranded DNAs (2) DNA-unwinding and (3) ATPase. Circular DNAs were not affected by the enzyme. Study of the dependence of these activities on temperature, pH, and ATP and Mg2+ concentrations has revealed two different states of the enzyme. At low ATP concentrations and alkaline pH, it showed chiefly nuclease action, degrading considerable amounts of DNA to small fragments five residues long on average. At higher ATP concentrations and neutral pH (more physiological conditions) it predominantly unwound DNA. Simultaneously it cut preferentially one of the duplex strands to fragments more than 1000 residues in length. The results obtained suggest that the energy of the enzyme-cleaved ATP is mainly expended on unwinding rather than on degrading DNA molecules.  相似文献   

20.
The adeno-associated virus (AAV) nonstructural proteins Rep68 and Rep78 are site-specific DNA binding proteins, ATP-dependent site-specific endonucleases, helicases, and ATPases. These biochemical activities are required for viral DNA replication and control of viral gene expression. In this study, we characterized the biochemical properties of the helicase and ATPase activities of homogeneously pure Rep68. The enzyme exists as a monomer in solution at the concentrations used in this study (<380 nM), as judged by its mobility in sucrose density gradients. Using a primed single-stranded (ss) circular M13 substrate, the helicase activity had an optimum pH of 7 to 7.5, an optimum temperature of 45°C, and an optimal divalent-cation concentration of 5 mM MgCl2. Several nucleoside triphosphates could serve as cofactors for Rep68 helicase activity, and the order of preference was ATP = GTP > CTP = dATP > UTP > dGTP. The Km values for ATP in both the DNA helicase reaction and the site-specific trs endonuclease reaction were essentially the same, approximately 180 μM. Both reactions were sigmoidal with respect to ATP concentration, suggesting that a dimer or higher-order multimer of Rep68 is necessary for both DNA helicase activity and terminal resolution site (trs) nicking activity. Furthermore, when the enzyme itself was titrated in the trs endonuclease and ATPase reactions, both activities were second order with respect to enzyme concentration. This suggests that a dimer of Rep68 is the active form for both the ATPase and nicking activities. In contrast, DNA helicase activity was linear with respect to enzyme concentration. When bound to ssDNA, the enzyme unwound the DNA in the 3′-to-5′ direction. DNA unwinding occurred at a rate of approximately 345 bp per min per monomeric enzyme molecule. The ATP turnover rate was approximately 30 to 50 ATP molecules per min per enzyme molecule. Surprisingly, the presence of DNA was not required for ATPase activity. We estimated that Rep translocates processively for more than 1,300 bases before dissociating from its substrate in the absence of any accessory proteins. DNA helicase activity was not significantly stimulated by substrates that have the structure of a replication fork and contain either a 5′ or 3′ tail. Rep68 binds only to ssDNA, as judged by inhibition of the DNA helicase reaction with ss or double-stranded (ds) DNA. Consistent with this observation, no helicase activity was detected on blunt-ended ds oligonucleotide substrates unless they also contained an ss 3′ tail. However, if a blunt-ended ds oligonucleotide contained the 22-bp Rep binding element sequence, Rep68 was capable of unwinding the substrate. This means that Rep68 can function both as a conventional helicase for strand displacement synthesis and as a terminal-repeat-unwinding protein which catalyzes the conversion of a duplex end to a hairpin primer. Thus, the properties of the Rep DNA helicase activity suggest that Rep is involved in all three of the key steps in AAV DNA replication: terminal resolution, reinitiation, and strand displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号