首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
CodY is a nutritional regulator mainly involved in amino acid metabolism. It has been extensively studied in Bacillus subtilis and Lactococcus lactis. We investigated the role of CodY in gene regulation and virulence of the human pathogen Streptococcus pneumoniae. We constructed a codY mutant and examined the effect on gene and protein expression by microarray and two-dimensional differential gel electrophoresis analysis. The pneumococcal CodY regulon was found to consist predominantly of genes involved in amino acid metabolism but also several other cellular processes, such as carbon metabolism and iron uptake. By means of electrophoretic mobility shift assays and DNA footprinting, we showed that most of the targets identified are under the direct control of CodY. By mutating DNA predicted to represent the CodY box based on the L. lactis consensus, we demonstrated that this sequence is indeed required for in vitro DNA binding to target promoters. Similar to L. lactis, DNA binding of CodY was enhanced in the presence of branched-chain amino acids, but not by GTP. We observed in experimental mouse models that codY is transcribed in the murine nasopharynx and lungs and is specifically required for colonization. This finding was underscored by the diminished ability of the codY mutant to adhere to nasopharyngeal cells in vitro. Furthermore, we found that pcpA, activated by CodY, is required for adherence to nasopharyngeal cells, suggesting a direct link between nutritional regulation and adherence. In conclusion, pneumococcal CodY predominantly regulates genes involved in amino acid metabolism and contributes to the early stages of infection, i.e., colonization of the nasopharynx.  相似文献   

4.
5.
6.
7.
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY - ami + cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.  相似文献   

8.
Bacillus cereus causes gastrointestinal diseases and local and systemic infections elicited by the depsipeptide cereulide, enterotoxins, phospholipases, cytolysins and proteases. The PlcR‐PapR quorum sensing system activates the expression of several virulence factors, whereas the Spo0A‐AbrB regulatory circuit partially controls the plasmid‐borne cereulide synthetase (ces) operon. Here, we show that CodY, a nutrient‐responsive regulator of Gram‐positive bacteria, has a profound effect on both regulatory systems, which have been assumed to operate independently of each other. Deletion of codY resulted in downregulation of virulence genes belonging to the PlcR regulon and a concomitant upregulation of the ces genes. CodY was found to be a repressor of the ces operon, but did not interact with the promoter regions of PlcR‐dependent virulence genes in vitro, suggesting an indirect regulation of the latter. Furthermore, CodY binds to the promoter of the immune inhibitor metalloprotease InhA1, demonstrating that CodY directly links B. cereus metabolism to virulence. In vivo studies using a Galleria mellonella infection model, showed that the codY mutant was substantially attenuated, highlighting the importance of CodY as a key regulator of pathogenicity. Our results demonstrate that CodY profoundly modulates the virulence of B. cereus, possibly controlling the development of pathogenic traits in suitable host environments.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The foodborne pathogen Bacillus cereus can form biofilms on various food contact surfaces, leading to contamination of food products. To study the mechanisms of biofilm formation by B. cereus, a Tn5401 library was generated from strain UW101C. Eight thousand mutants were screened in EPS, a low nutrient medium. One mutant (M124), with a disruption in codY, developed fourfold less biofilm than the wild-type, and its defective biofilm phenotype was rescued by complementation. Addition of 0.1% casamino acids to EPS prolonged the duration of biofilms in the wild-type but not codY mutant. When decoyinine, a GTP synthesis inhibitor, was added to EPS, biofilm formation was decreased in the wild-type but not the mutant. The codY mutant produced three times higher protease activity than the wild-type. Zymogram and SDS-PAGE data showed that production of the protease (∼130 kDa) was repressed by CodY. Addition of proteinase K to EPS decreased biofilm formation by the wild-type. Using a dpp-lacZ fusion reporter system, it was shown that that the B. cereus CodY can sense amino acids and GTP levels. These data suggest that by responding to amino acids and intracellular GTP levels CodY represses production of an unknown protease and is involved in biofilm formation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号