首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington''s disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues. We have developed several sensitive and selective assays that measure either total human HTT or polyglutamine-expanded human HTT proteins on the electrochemiluminescence Meso Scale Discovery detection platform with an increased dynamic range over other methods. In addition, we have developed an assay to detect endogenous mouse and rat HTT proteins in pre-clinical models of HD to monitor effects on the wild type protein of both allele selective and non-selective interventions. We demonstrate the application of these assays to measure HTT protein in several HD in vitro cellular and in vivo animal model systems as well as in HD patient biosamples. Furthermore, we used purified recombinant HTT proteins as standards to quantitate the absolute amount of HTT protein in such biosamples.  相似文献   

2.

Background

Misfolding- and aggregation-prone proteins underlying Parkinson''s, Huntington''s and Machado-Joseph diseases, namely α-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.

Methodology/Principal Findings

Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of α-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.

Conclusions/Significance

These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases.  相似文献   

3.
4.

Background

Huntington''s disease (HD) is caused by expanded CAG repeats encoding a polyglutamine tract in the huntingtin (HTT) protein. A number of differentially-expressed protein molecules have been identified in striatum of HD animal models. Here we examined if the expression changes could be visualized in the peripheral leukocytes of HD patients and pre-symptomatic HD (PreHD) carriers.

Methods and findings

The expression levels of 17 candidate genes that differentially expressed in striatum between transgenic HD and wild-type mice in literature were measured in the peripheral leukocytes of 4 PreHD carriers, 16 HD patients and 20 healthy controls. Four genes majorly involved in metabolism and oxidative stress response, including AHCY1, ACO2, OXCT1 and CAP1, demonstrated consistent downregulation in peripheral leukocytes of both PreHD carriers and HD patients, while UCP2 was only down-regulated in HD patients.

Conclusion

These results provide potential peripheral biomarkers to indicate disease onset in preclinical stage, and to monitor the efficacy of early treatment. Further studies of a large series of preHD carriers and symptomatic HD patients will be warranted to verify the findings and examine if these markers correlate with clinical features.  相似文献   

5.
Studies of huntingtin localization in human post-mortem brain offer insights and a framework for basic experiments in the pathogenesis of Huntington''s disease. In neurons of cortex and striatum, we identified changes in the cytoplasmic localization of huntingtin including a marked perinuclear accumulation of huntingtin and formation of multivesicular bodies, changes conceivably pointing to an altered handling of huntingtin in neurons. In Huntington''s disease, huntingtin also accumulates in aberrant subcellular compartments such as nuclear and neuritic aggregates co-localized with ubiquitin. The site of protein aggregation is polyglutamine-dependent, both in juvenile-onset patients having more aggregates in the nucleus and in adult-onset patients presenting more neuritic aggregates. Studies in vitro reveal that the genesis of these aggregates and cell death are tied to cleavage of mutant huntingtin. However, we found that the aggregation of mutant huntingtin can be dissociated from the extent of cell death. Thus properties of mutant huntingtin more subtle than its aggregation, such as its proteolysis and protein interactions that affect vesicle trafficking and nuclear transport, might suffice to cause neurodegeneration in the striatum and cortex. We propose that mutant huntingtin engages multiple pathogenic pathways leading to neuronal death.  相似文献   

6.
Lajoie P  Snapp EL 《PloS one》2010,5(12):e15245

Background

Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington''s disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt.

Methodology/Principal Findings

When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Httex1) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHttex1 variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHttex1 formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHttex1 split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHttex1 to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHttex1. A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHttex1 oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs.

Conclusions/Significance

Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.  相似文献   

7.

Background

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntington's disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD.

Results

Everolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels.

Conclusions

Our data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.
  相似文献   

8.
Huntington''s disease (HD) is the most common inherited neurodegenerative disease and is characterized by uncontrolled excessive motor movements and cognitive and emotional deficits. The mutation responsible for HD leads to an abnormally long polyglutamine (polyQ) expansion in the huntingtin (Htt) protein, which confers one or more toxic functions to mutant Htt leading to neurodegeneration. The polyQ expansion makes Htt prone to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins tend to slow disease progression in HD models. This article will focus on HD and the evidence that it is a conformational disease.  相似文献   

9.
Glutamine repeat expansion has been established as the mutation underlying five inherited neurodegenerative diseases. The mechanism by which this apparently universal mutation, in ubiquitously expressed proteins, causes highly selective neurodegeneration is unknown. The proteins containing the glutamine expansions are otherwise unrelated and likely to have different functions. Two recently published papers(1,2) provide evidence of a conformational change occurring in polyglutamine expansions, which may allow novel interactions and is consistent with a toxic gain-of-function hypothesis. HAP1, a protein that interacts with huntingtin (Huntington's disease protein), has an expression profile that intriguingly mirrors the selective neurodegeneration seen in Huntington's disease(2).  相似文献   

10.

Background

Huntington''s disease (HD) is an inherited progressive neurodegenerative disorder caused by a CAG repeat expansion in the ubiquitously expressed HD gene resulting in an abnormally long polyglutamine repeat in the huntingtin protein. Polyglutamine inclusions are a hallmark of the neuropathology of HD. We have previously shown that inclusion pathology is also present in the peripheral tissues of the R6/2 mouse model of HD which expresses a small N-terminal fragment of mutant huntingtin. To determine whether this peripheral pathology is a consequence of the aberrant expression of this N-terminal fragment, we extend this analysis to the genetically precise knock-in mouse model of HD, HdhQ150, which expresses mutant mouse huntingtin.

Methodology/Principal Findings

We have previously standardized the CAG repeat size and strain background of the R6/2 and HdhQ150 knock-in mouse models and found that they develop a comparable and widespread neuropathology. To determine whether HdhQ150 knock-in mice also develop peripheral inclusion pathology, homozygous Hdh Q150/Q150 mice were perfusion fixed at 22 months of age, and tissues were processed for histology and immunohistochemistry with the anti-huntingtin antibody S830. The peripheral inclusion pathology was almost identical to that found in R6/2 mice at 12 weeks of age with minor differences in inclusion abundance.

Conclusions/Significance

The highly comparable peripheral inclusion pathology that is present in both the R6/2 and HdhQ150 knock-in models of HD indicates that the presence of peripheral inclusions in R6/2 mice is not a consequence of the aberrant expression of an N-terminal huntingtin protein. It remains to be determined whether peripheral inclusions are a pathological feature of the human disease. Both mouse models carry CAG repeats that cause childhood disease in humans, and therefore, inclusion pathology may be a feature of the childhood rather than the adult forms of HD. It is important to establish the extent to which peripheral pathology causes the peripheral symptoms of HD from the perspective of a mechanistic understanding and future treatment options.  相似文献   

11.
《Journal of molecular biology》2019,431(9):1869-1877
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD.  相似文献   

12.
Huntington''s disease (HD) is caused by polyglutamine expansion in huntingtin (htt) protein, but the exact mechanism of HD pathogenesis remains uncertain. Recent evidence suggests that htt proteins with expanded polyglutamine tracts induce endoplasmic reticulum (ER) stress, probably by interfering with ER-associated degradation (ERAD). Here we report that mutant htt interacts and interferes with the function of gp78, an ER membrane-anchored ubiquitin ligase (E3) involved in ERAD. Mapping studies showed that the HEAT repeats 2&3 of htt interact with the cue domain of gp78. The interaction competitively reduces polyubiquitinated protein binding to gp78 and also sterically blocks gp78 interaction of p97/VCP, a molecular chaperone that is essential for ERAD. These effects of htt negatively regulate the function of gp78 in ERAD and are aggravated by polyglutamine expansion. Paradoxically, gp78 is still able to ubiquitinate and facilitate degradation of htt proteins with expanded polyglutamine. The impairment of ERAD by mutant htt proteins is associated with induction of ER stress. Our studies provide a novel molecular mechanism that supports the involvement of ER stress in HD pathogenesis.  相似文献   

13.
14.
Huntington's disease (HD) is caused by a polyglutamine expansion in the protein huntingtin (Htt). Several studies suggest that Htt and huntingtin associated protein 1 (HAP1) participate in intracellular trafficking and that polyglutamine expansion affects vesicular transport. Understanding the function of HAP1 and its related proteins could help elucidate the pathogenesis of HD. The present review focuses on HAP1, which has proved to be involved in intracellular trafficking. Unlike huntingtin, which is expressed ubiquitously throughout the brain and body, HAP1 is enriched in neurons, suggesting that its dysfunction could contribute to the selective neuropathology in HD. We discuss recent evidence for the involvement of HAP1 and its binding proteins in potential functions.  相似文献   

15.
16.
Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington''s disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington''s disease.  相似文献   

17.

Background

Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN +]), which has a glutamine/asparagine-rich domain.

Principal Findings

Here, we showed that aggregation and toxicity of mutant htt depended on [PIN +] only quantitatively: the presence of [PIN +] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN +], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN +] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast.

Conclusions

The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity.  相似文献   

18.
Abasic substitutions within DNA or RNA are tools for evaluating the impact of absent nucleobases. Because of the importance of abasic sites in genetic damage, most research has involved DNA. Little information is available on the impact of abasic substitutions within RNA or on RNA interference (RNAi). Here, we examine the effect of abasic substitutions on RNAi and allele-selective gene silencing. Huntington''s disease (HD) and Machado Joseph Disease (MJD) are severe neurological disorders that currently have no cure. HD and MJD are caused by an expansion of CAG repeats within one mRNA allele encoding huntingtin (HTT) and ataxin-3 (ATX-3) proteins. Agents that silence mutant HTT or ATX-3 expression would remove the cause of HD or MJD and provide an option for therapeutic development. We describe flexible syntheses for abasic substitutions and show that abasic RNA duplexes allele-selectively inhibit both mutant HTT and mutant ATX-3. Inhibition involves the RNAi protein argonaute 2, even though the abasic substitution disrupts the catalytic cleavage of RNA target by argonaute 2. Several different abasic duplexes achieve potent and selective inhibition, providing a broad platform for subsequent development. These findings introduce abasic substitutions as a tool for tailoring RNA duplexes for gene silencing.  相似文献   

19.

Background

Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington''s disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD.

Methodology/Principal Findings

We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, VL12.3, turnover of soluble mHDx-1 in living cells is blocked.

Conclusions/Significance

These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications.  相似文献   

20.
Huntington''s disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD, suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic mechanisms and future directions for the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号