首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and help to explain the dominance of members of this clade in association with marine algal microbiota.  相似文献   

2.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

3.
4.
W. Hüsemann 《Protoplasma》1981,109(3-4):415-431
Summary This communication reports the photoautotrophic growth of hormone and vitamin independent cell suspension cultures ofChenopodium rubrum. The transfer of cells from stationary growth into fresh culture medium results in a high protein formation, followed by an exponential phase of cell division, whereas the onset of rapid chlorophyll formation is delayed for 4 days. At the stage of most rapid cell division there is no net synthesis of starch and sugar. When the cells enter stationary growth, there is a progressive accumulation of chlorophyll, sugar, and starch.Photoautotrophic cell cultures assimilate about 80–90 mol CO2/mg chlorophyll X hour. Dark CO2 fixation is about 3.7% to 2.2% of the light values during exponential and stationary growth, respectively. As shown by short-term14CO2 fixation, CO2 is predominantly assimilated through ribulosebisphosphate carboxylase via the Calvin pathway. There is a significant increase in the14C label of C4 carboxylic acids in exponentially dividing cells as compared to cells from stationary growth. Thein vitro activity of phosphoenolpyruvate carboxylase and ribulosebisphosphate carboxylase is almost equal during exponential cell division. A decrease in cell division activity is accompanied by a significant change in the specific activities of both carboxylation enzymes. In non dividing cells from stationary growth the activity of ribulosebisphosphate carboxylase is greately enhanced and that of phosphoenolpyruvate carboxylase is reduced, documenting the development of carboxylation capacities typical for C3-plants.The experimental results provide evidence that phosphoenolpyruvate carboxylase activity might be regulated by ammonia and could be involved in anaplerotic CO2 fixation which supplies carbon skeletons of the citric acid cycle.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - FDP fructose bisphosphate - F-6-P fructose-6-phosphate - G-6-P glucose-6-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenolpyruvate - RuDP ribulosebisphosphate  相似文献   

5.
The moderately thermophilic Betaproteobacterium, Hydrogenophilus thermoluteolus, not only oxidizes hydrogen, the principal electron donor for growth, but also sulfur compounds including thiosulfate, a process enabled by sox genes. A periplasmic extract of H. thermoluteolus showed significant thiosulfate oxidation activity. Ten genes apparently involved in thiosulfate oxidation (soxEFCDYZAXBH) were found on a 9.7-kb DNA fragment of the H. thermoluteolus chromosome. The proteins SoxAX, which represent c-type cytochromes, were co-purified from the cells of H. thermoluteolus; they enhanced the thiosulfate oxidation activity of the periplasmic extract when added to the latter.  相似文献   

6.
7.
Members of the Roseobacter clade colonize a Spanish turbot larval unit, and one isolate (Phaeobacter strain 27-4) is capable of disease suppression in in vivo challenge trials. Here, we demonstrate that roseobacters with antagonistic activity against Vibrio anguillarum also colonize a Danish turbot larval farm that relies on a very different water source (the Danish fiord Limfjorden as opposed to the Galician Atlantic Ocean). Phylogenetic analyses based on 16S rRNA and gyrase B gene sequences revealed that different species colonized different niches in the larval unit. Phaeobacter inhibens- and Phaeobacter gallaeciensis-like strains were primarily found in the production sites, whereas strains identified as Ruegeria mobilis or Ruegeria pelagia were found only in the algal cultures. Phaeobacter spp. were more inhibitory against the general microbiota from the Danish turbot larval unit than were the Ruegeria spp. Phaeobacter spp. produced tropodithietic acid (TDA) and brown pigment and antagonized V. anguillarum when grown under shaking (200 rpm) and stagnant (0 rpm) conditions, whereas Ruegeria spp. behaved similarly to Phaeobacter strain 27-4 and expressed these three phenotypes only during stagnant growth. Both genera attached to an inert surface and grew in multicellular rosettes after stagnant growth, whereas shaking conditions led to single cells with low attachment capacity. Bacteria from the Roseobacter clade appear to be universal colonizers of marine larval rearing units, and since the Danish Phaeobacter spp. displayed antibacterial activity under a broader range of growth conditions than did Phaeobacter strain 27-4, these organisms may hold greater promise as fish probiotic organisms.  相似文献   

8.
The effect of N-assimilation on the partitioning of carbon fixation between phosphoenolpyruvate carboxylase (PEPcase) and ribulose bisphosphate carboxylase/oxygenase (Rubisco) was determined by measuring stable carbon isotope discrimination during photosynthesis by an N-limited green alga, Selenastrum minutum (Naeg.) Collins. This was facilitated by a two process model accounting for simultaneous CO2 fixation and respiratory CO2 release. Discrimination by control cells was consistent with the majority of carbon being fixed by Rubisco. During nitrogen assimilation however, discrimination was greatly reduced indicating an enhanced flux through PEPcase which accounted for upward of 70% of total carbon fixation. This shift toward anaplerotic metabolism supports a large increase in tricarboxylic acid cycle activity primarily between oxaloacetate and α-ketoglutarate thereby facilitating the provision of carbon skeletons for amino acid synthesis. This provides an example of a unique set of conditions under which anaplerotic carbon fixation by PEPcase exceeds photosynthetic carbon fixation by Rubisco in a C3 organism.  相似文献   

9.
In a study of chemosynthesis (the fixation of CO2 by autotrophic bacteria in the dark) in Thiobacillus thiooxidans, the data obtained support the following conclusions: 1. CO2 can be fixed by "resting cells" of Thiobacillus thiooxidans; the fixation is not "growth bound." 2. The physiological condition of the cell is of considerable importance in determining CO2 fixation. 3. CO2 fixation can occur in the absence of oxidizable sulfur in "young" cells. The extent of this fixation appears to be dependent upon the pCO2. 4. CO2 fixation can also occur under anaerobic conditions and the presence of sulfur does not influence such fixation. 5. However, in the CO2 fixation by cells in the absence of sulfur, only a limited amount of CO2 can be fixed. This amount is approximately 40 µl. CO2 per 100 micrograms bacterial nitrogen. After a culture has utilized this amount of CO2 it no longer has the ability to fix CO2 but releases it during its respiration. 6. Relatively short periods of sulfur oxidation can restore the ability of cells to fix CO2 under conditions where sulfur oxidation is prevented. 7. It is possible to oxidize sulfur in the absence of CO2 and to store the energy thus formed within the cell. It is then possible to use this energy at a later time for the fixation of CO2 in the entire absence of sulfur oxidation. 8. Cultures of Thiobacillus thiooxidans respiring on sulfur utilize CO2 in a reaction which proceeds to a zero concentration of CO2 in the atmosphere. 9. CO2 may act as an oxidizing agent for sulfur. 10. Hydrogen is not utilized by the organism. 11. It is possible to selectively inhibit sulfur oxidation and CO2 fixation.  相似文献   

10.
The repressor of sulfur-oxidizing (sox) operon regulates expression of genes encoding a multienzyme complex that governs the chemolithotrophic sulfur oxidation in Pseudaminobacter salycylatoxidans KCT001. The inducer of sox operon viz., thiosulfate and other sulfur anions had no impact on in vitro repressor–operator interaction which indicates an atypical derepression mechanism. The reduced repressor has higher affinity for its operator DNA. The sulfur oxidation repressor binds with operator regions and led to efficient repression in trans, however, increased repressor concentration resulted in higher gene expression. Using a reporter system in E. coli, the present study established that the thioredoxin-like protein, encoded in immediate upstream ORF, could nullify the observed reversal of the repression at higher repressor concentration. In this context, the involvement of the upstream gene product in the regulation of the sulfur oxidation gene expression has been reported.  相似文献   

11.
The pathway of autotrophic CO2 fixation was studied in the phototrophic bacterium Chloroflexus aurantiacus and in the aerobic thermoacidophilic archaeon Metallosphaera sedula. In both organisms, none of the key enzymes of the reductive pentose phosphate cycle, the reductive citric acid cycle, and the reductive acetyl coenzyme A (acetyl-CoA) pathway were detectable. However, cells contained the biotin-dependent acetyl-CoA carboxylase and propionyl-CoA carboxylase as well as phosphoenolpyruvate carboxylase. The specific enzyme activities of the carboxylases were high enough to explain the autotrophic growth rate via the 3-hydroxypropionate cycle. Extracts catalyzed the CO2-, MgATP-, and NADPH-dependent conversion of acetyl-CoA to 3-hydroxypropionate via malonyl-CoA and the conversion of this intermediate to succinate via propionyl-CoA. The labelled intermediates were detected in vitro with either 14CO2 or [14C]acetyl-CoA as precursor. These reactions are part of the 3-hydroxypropionate cycle, the autotrophic pathway proposed for C. aurantiacus. The investigation was extended to the autotrophic archaea Sulfolobus metallicus and Acidianus infernus, which showed acetyl-CoA and propionyl-CoA carboxylase activities in extracts of autotrophically grown cells. Acetyl-CoA carboxylase activity is unexpected in archaea since they do not contain fatty acids in their membranes. These aerobic archaea, as well as C. aurantiacus, were screened for biotin-containing proteins by the avidin-peroxidase test. They contained large amounts of a small biotin-carrying protein, which is most likely part of the acetyl-CoA and propionyl-CoA carboxylases. Other archaea reported to use one of the other known autotrophic pathways lacked such small biotin-containing proteins. These findings suggest that the aerobic autotrophic archaea M. sedula, S. metallicus, and A. infernus use a yet-to-be-defined 3-hydroxypropionate cycle for their autotrophic growth. Acetyl-CoA carboxylase and propionyl-CoA carboxylase are proposed to be the main CO2 fixation enzymes, and phosphoenolpyruvate carboxylase may have an anaplerotic function. The results also provide further support for the occurrence of the 3-hydroxypropionate cycle in C. aurantiacus.  相似文献   

12.
In the autotrophic bacterium, Thiobacillus thiooxidans, the oxidation of sulfur is coupled to transfers of phosphate from the medium to the cells. CO2 fixation is coupled to transfers of inorganic phosphate from the cells to the medium and is dependent, in the absence of concomitant sulfur oxidation, upon the amount of phosphate previously taken up during sulfur oxidation. The energy reservoir, which is formed by sulfur oxidation in the absence of CO2 and which can be released for the fixation of CO2 under conditions which do not permit sulfur oxidation, is a phosphorylated compound and the data suggest that the energy is stored in the cell as phosphate bond energy. It is possible to oxidize sulfur at a constant rate for hours in the absence of CO2. The phosphate energy formed during this process is probably released by cell phosphotases. It is possible to inhibit these phosphotases by means of inorganic phosphate and thus to inhibit sulfur oxidation in the absence of CO2. In the presence of CO2, where alternative uses for the phosphate energy are available, the inhibition is relieved. Sulfur oxidation (energy input) is coupled, not to CO2 fixation, but to phosphate esterification. CO2 fixation (energy utilization) is coupled with phosphate release.  相似文献   

13.
Photosynthesis by Anacystis nidulans was studied in presence of reduced sulfur or nitrogen compounds, or of hydrogen. O2 evolution and CO2 fixation were depressed by sulfide, sulfite, cysteine, thioglycollate, hydroxylamine and hydrazine. Sulfite, cysteine and hydrazine inhibited O2 evolution much more strongly than CO2 fixation, indicating ability to supply electrons for CO2 photoreduction; DCMU suppressed these photoreductions. In contrast, some anoxygenic photosynthetic CO2 fixation insensitive to DCMU was found with sulfide, thiosulfate and hydrogen. Emerson enhancement studies confirmed that sulfite, cysteine and hydrazine acted on photosystem II, while photoreduction supported by sulfide, thiosulfate and hydrogen needed photosystem I only.Sulfite was photooxidized to sulfate, sulfide to elemental sulfur, and thiosulfate to sulfate plus elemental sulfur; the sulfur accumulated inside the cells. Results on the stoichiometries of the photoreductions were consistent with the photooxidation products determined. Inhibitor studies suggested photosynthetic CO2 fixation through the Calvin cycle.While photoreduction by all reductants used was found to be constitutive in Anacystis, the process was stimulated by anaerobic preincubation with the reductants only in the cases of hydrogen and thiosulfate; this adaptation was prevented by chloramphenicol and by O2. Anaerobic photoautotrophic growth of Anacystis was, however, not observed; the increase in dry weight with H2 and thiosulfate was not accompanied by cell multiplication or by an increase in chlorophyll content. Parallel short-term experiments with Chlorella did not reveal any constitutive photoreduction in this eukaryotic alga.Abbreviations CAP chloramphenicol - CCCP carbonyl cyanide m-chlorophenylhydrazone - DBMIB dibromothymoquinone - DCMU dichlorophenyl dimethyl urea - DSPD disalicylidenepropane diamine-(1,3) - EDAC 1-ethyl-3(3-dimethylaminopropyl-) carbodiimide  相似文献   

14.
The Roseobacter clade of aerobic marine proteobacteria, which compose 10–25% of the total marine bacterial community, has been reported to fix CO2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B12 (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of 13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10–15% of protein carbon from CO2; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source.  相似文献   

15.
16.
Capacity for lithotrophic growth coupled to oxidation of reduced sulfur compounds was revealed in an Azospirillum strain, A. thiophilum BV-S T . Oxygen concentration in the medium was the major factor determining the type of energy metabolism (organotrophic or lithotrophic) in the presence of thiosulfate. Under aerobic conditions, metabolism of A. thiophilum BV-ST was organoheterotrophic, with thiosulfate oxidation to tetrathionate resulting from the interaction with reactive oxygen species, mostly H2O2, which was formed in the electron transport chain in the course of oxidation of organic electron donors. Under microaerobic conditions (2 mg/L O2 in liquid medium), A. thiophilum BV-ST carried out lithoheterotrophic (mixotrophic) metabolism; enzymes of the dissimilatory type of sulfur metabolism were responsible for thiosulfate oxidation to tetrathionate and sulfate. Two enzyme systems were found in the cells: thiosulfate dehydrogenase, which catalyzes incomplete oxidation of thiosulfate to tetrathionate and the thiosulfate-oxidizing Sox enzyme complex, which is involved in complete oxidation of thiosulfate to sulfate. The genetic determinant of a Sox complex component in A. thiophilum BV-ST was revealed. The soxB gene was found, and its expression under microaerobic conditions was observed to increase 32-fold compared to aerobic cultivation.  相似文献   

17.
1. It is shown that Sulfomonas thiooxidans oxidizes elementary sulfur completely to sulfuric acid. Sodium thiosulfate is oxidized by this organism completely to sulfate. Sulfomonas thiooxidans differs, in this respect, from various other sulfur-oxidizing bacilli which either produce elementary sulfur, from the thiosulfate, or convert it into sulfates and persulfates. 2. The organism derives its carbon from the CO2 of the atmosphere, but is incapable of deriving the carbon from carbonates or organic matter. 3. The S:C, or ratio between the amount of sulfur oxidized to sulfate and amount of carbon assimilated chemosynthetically from the CO2 of the atmosphere, is, with elementary sulfur as a source of energy, 31.8, and with thiosulfate 64.2. The higher ratio in the case of the thiosulfate is due to the smaller amount of energy liberated in the oxidation of sulfur compound than in the elementary form. 4. Of the total energy made available in the oxidation of the sulfur to sulfuric acid, only 6.65 per cent is used by the organism for the reduction of atmospheric CO2 and assimilation of carbon. 5. Sulfates do not exert any injurious effect upon sulfur oxidation by Sulfomonas thiooxidans. Any effect obtained is due to the cation rather than the sulfate radical. Nitrates exert a distinctly injurious action both on the growth and respiration of the organism. 6. There is a definite correlation between the amount of sulfur present and velocity of oxidation, very similar to that found in the growth of yeasts and nitrifying bacteria. Oxidation reaches a maximum with about 25 gm. of sulfur added to 100 cc. of medium. However, larger amounts of sulfur have no injurious effect. 7. Dextrose does not exert any appreciable injurious effect in concentrations less than 5 per cent. The injurious effect of peptone sets in at 0.1 per cent concentration and brings sulfur oxidation almost to a standstill in 1 per cent concentration. Dextrose does not exert any appreciable influence upon sulfur oxidation and carbon assimilation from the carbon dioxide of the atmosphere. 8. Sulfomonas thiooxidans can withstand large concentrations of sulfuric acid. The oxidation of sulfur is affected only to a small extent even by 0.25 molar initial concentration of the acid. In 0.5 molar solutions, the injurious effect becomes marked. The organism may produce as much as 1.5 molar acid, without being destroyed. 9. Growth is at an optimum at a hydrogen ion concentration equivalent to pH 2.0 to 5.5, dropping down rapidly on the alkaline side, but not to such an extent on the acid, particularly when a pure culture is employed. 10. Respiration of the sulfur-oxidizing bacteria can be studied by using the filtrate of a vigorously growing culture, to which a definite amount of sulfur is added, and incubating for 12 to 24 hours.  相似文献   

18.
19.
Sulfur sources capable of replacing sulfide were surveyed for biomethanation from H2 and CO2 by thermoautotrophic methanogen, Methanobacterium thermoautotrophicum. Among sulfur containing compounds tested, l-cysteine, thiosulfate and coenzyme M gave poor growth when added as sulfur sources, whereas simultaneous addition of two sulfur sources, l-cysteine+thiosulfate, l-cysteine+l-methionine or l-cysteine+coenzyme M stimulated the growth.In a pressure-controlled fermentor system developed to obtain stoichiometry between input and output gases, the ratio of H2 and CO2 consumption to CH4 production was almost stoichiometric, and when l-cysteine and thiosulfate or l-methionine were used in place of sulfide (control) similar growth patterns were observed. In a culture with continuous supply of substrates gases (1.3 vvm) and sulfur sources of 1 mM l-cysteine+2 mM thiosulfate, specific growth rate and specific methane production rate were 0.35 h and 3.24 l g−1h−1, respectively, compared to 0.22 h−1 and 5.76 l gh−1 with Na2 S.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号